Mass Cytometry pp 245-265 | Cite as

Data-Driven Flow Cytometry Analysis

  • Sherrie Wang
  • Ryan R. BrinkmanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1989)


The emergence of flow and mass cytometry technologies capable of generating 40-dimensional data has spurred research into automated methodologies that address bottlenecks across the entire analysis process from quality checking, data transformation, and cell population identification, to biomarker identification and visualizations. We review these approaches in the context of the stepwise progression through the different steps, including normalization, automated gating, outlier detection, and graphical presentation of results.

Key words

Flow cytometry Data analysis Bioinformatics 



This work was supported by GenomeCanada (252FLO Brinkman), NSERC, GenomeBC, and NIH (1 R01 GM118417-01A1).


  1. 1.
    Kvistborg P, Gouttefangeas C, Aghaeepour N et al (2015) Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 42(4):591–592. Scholar
  2. 2.
    Hahne F, LeMeur N, Brinkman RR et al (2009) flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106. Scholar
  3. 3.
    Robinson JP, Rajwa B, Patsekin V et al (2012) Computational analysis of high-throughput flow cytometry data. Expert Opin Drug Discov 7(8):679–693. Scholar
  4. 4.
    Finak G, Jiang W, Pardo J et al (2012) QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinformatics 13:252. Scholar
  5. 5.
    Gentleman R, Hahne F, Kettman J et al. (2017) flowQ: quality control for flow cytometry. R package version 1.38Google Scholar
  6. 6.
    Spidlen J, El Khettabi F, Moore W et al. (2017) flowQB: automated quadratic characterization of flow cytometry instrument sensitivity: Q, B and CV instrinsic calculations. R package version 2.6.0.
  7. 7.
    O’Neill K, Aghaeepour N, Spidlen J et al (2013) Flow cytometry bioinformatics. PLoS Comput Biol 9(12):e1003365. Scholar
  8. 8.
    Hahne F, Khodabakhshi AH, Bashashati A et al (2010) Per-channel basis normalization methods for flow cytometry data. Cytometry A 77(2):121–131. Scholar
  9. 9.
    Finak G, Jiang W, Krouse K et al (2014) High-throughput flow cytometry data normalization for clinical trials. Cytometry A 85(3):277–286. Scholar
  10. 10.
    Li H, Shaham U, Stanton KP et al (2017) Gating mass cytometry data by deep learning. Bioinformatics 33(21):3423–3430. Scholar
  11. 11.
    Maecker HT, Rinfret A, D’Souza P et al (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13. Scholar
  12. 12.
    McNeil LK, Price L, Britten CM et al (2013) A harmonized approach to intracellular cytokine staining gating: results from an international multiconsortia proficiency panel conducted by the cancer immunotherapy consortium (CIC/CRI). Cytometry A 83(8):728–738. Scholar
  13. 13.
    Verschoor CP, Lelic A, Bramson JL et al (2015) An introduction to automated Flow cytometry gating tools and their implementation. Front Immunol 6:380. Scholar
  14. 14.
    Rebhahn JA, Roumanes DR, Qi Y et al (2016) Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 89(1):59–70. Scholar
  15. 15.
    Aghaeepour N, Finak G, Flow CAPC et al (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10(3):228–238. Scholar
  16. 16.
    Malek M, Taghiyar MJ, Chong L et al (2015) flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31(4):606–607. Scholar
  17. 17.
    Finak G, Frelinger J, Jiang W et al (2014) OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 10(8):e1003806. Scholar
  18. 18.
    Aghaeepour N, Chattopadhyay P, Chikina M et al (2016) A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89(1):16–21. Scholar
  19. 19.
    Finak G, Langweiler M, Jaimes M et al (2016) Standardizing flow cytometry Immunophenotyping analysis from the human Immunophenotyping consortium. Sci Rep 6:20686. Scholar
  20. 20.
    Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096. Scholar
  21. 21.
    Rogers WT, Holyst HA (2009) FlowFP: a bioconductor package for fingerprinting flow cytometric data. Adv Bioinforma 2009:193947. Scholar
  22. 22.
    Aghaeepour N, O’Neill K, Jalali A (2014) flowType: phenotyping Flow cytometry assays. R package version 2.14.0Google Scholar
  23. 23.
    Van Gassen S, Vens C, Dhaene T et al (2016) FloReMi: flow density survival regression using minimal feature redundancy. Cytometry A 89(1):22–29. Scholar
  24. 24.
    Anchang B, Hart TD, Bendall SC et al (2016) Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protoc 11(7):1264–1279. Scholar
  25. 25.
    van der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  26. 26.
    Bruggner RV, Bodenmiller B, Dill DL et al (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777. Scholar
  27. 27.
    Aghaeepour N, Jalali A, O’Neill K et al (2012) RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 81(12):1022–1030. Scholar
  28. 28.
    O’Neill K, Jalali A, Aghaeepour N et al (2014) Enhanced flowType/RchyOptimyx: a BioConductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30(9):1329–1330. Scholar
  29. 29.
    Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696. Scholar
  30. 30.
    Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. Scholar
  31. 31.
    Lee JA, Spidlen J, Boyce K et al (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73(10):926–930. Scholar
  32. 32.
    Courtot M, Meskas J, Diehl AD et al (2015) flowCL: ontology-based cell population labelling in flow cytometry. Bioinformatics 31(8):1337–1339. Scholar
  33. 33.
    R Programming. Accessed 19 Dec 2017
  34. 34.
    Statistics and R. Accessed 19 Dec 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Terry Fox Laboratory, British Columbia Cancer AgencyVancouverCanada

Personalised recommendations