Advertisement

Mass Cytometry pp 245-265 | Cite as

Data-Driven Flow Cytometry Analysis

  • Sherrie Wang
  • Ryan R. BrinkmanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1989)

Abstract

The emergence of flow and mass cytometry technologies capable of generating 40-dimensional data has spurred research into automated methodologies that address bottlenecks across the entire analysis process from quality checking, data transformation, and cell population identification, to biomarker identification and visualizations. We review these approaches in the context of the stepwise progression through the different steps, including normalization, automated gating, outlier detection, and graphical presentation of results.

Key words

Flow cytometry Data analysis Bioinformatics 

Notes

Acknowledgments

This work was supported by GenomeCanada (252FLO Brinkman), NSERC, GenomeBC, and NIH (1 R01 GM118417-01A1).

References

  1. 1.
    Kvistborg P, Gouttefangeas C, Aghaeepour N et al (2015) Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 42(4):591–592.  https://doi.org/10.1016/j.immuni.2015.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hahne F, LeMeur N, Brinkman RR et al (2009) flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106.  https://doi.org/10.1186/1471-2105-10-106CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Robinson JP, Rajwa B, Patsekin V et al (2012) Computational analysis of high-throughput flow cytometry data. Expert Opin Drug Discov 7(8):679–693.  https://doi.org/10.1517/17460441.2012.693475CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Finak G, Jiang W, Pardo J et al (2012) QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinformatics 13:252.  https://doi.org/10.1186/1471-2105-13-252CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gentleman R, Hahne F, Kettman J et al. (2017) flowQ: quality control for flow cytometry. R package version 1.38Google Scholar
  6. 6.
    Spidlen J, El Khettabi F, Moore W et al. (2017) flowQB: automated quadratic characterization of flow cytometry instrument sensitivity: Q, B and CV instrinsic calculations. R package version 2.6.0. https://www.bioconductor.org/packages/release/bioc/html/flowQB.html
  7. 7.
    O’Neill K, Aghaeepour N, Spidlen J et al (2013) Flow cytometry bioinformatics. PLoS Comput Biol 9(12):e1003365.  https://doi.org/10.1371/journal.pcbi.1003365CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hahne F, Khodabakhshi AH, Bashashati A et al (2010) Per-channel basis normalization methods for flow cytometry data. Cytometry A 77(2):121–131.  https://doi.org/10.1002/cyto.a.20823CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Finak G, Jiang W, Krouse K et al (2014) High-throughput flow cytometry data normalization for clinical trials. Cytometry A 85(3):277–286.  https://doi.org/10.1002/cyto.a.22433CrossRefPubMedGoogle Scholar
  10. 10.
    Li H, Shaham U, Stanton KP et al (2017) Gating mass cytometry data by deep learning. Bioinformatics 33(21):3423–3430.  https://doi.org/10.1093/bioinformatics/btx448CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Maecker HT, Rinfret A, D’Souza P et al (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13.  https://doi.org/10.1186/1471-2172-6-13CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    McNeil LK, Price L, Britten CM et al (2013) A harmonized approach to intracellular cytokine staining gating: results from an international multiconsortia proficiency panel conducted by the cancer immunotherapy consortium (CIC/CRI). Cytometry A 83(8):728–738.  https://doi.org/10.1002/cyto.a.22319CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Verschoor CP, Lelic A, Bramson JL et al (2015) An introduction to automated Flow cytometry gating tools and their implementation. Front Immunol 6:380.  https://doi.org/10.3389/fimmu.2015.00380CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rebhahn JA, Roumanes DR, Qi Y et al (2016) Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 89(1):59–70.  https://doi.org/10.1002/cyto.a.22740CrossRefPubMedGoogle Scholar
  15. 15.
    Aghaeepour N, Finak G, Flow CAPC et al (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10(3):228–238.  https://doi.org/10.1038/nmeth.2365CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Malek M, Taghiyar MJ, Chong L et al (2015) flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31(4):606–607.  https://doi.org/10.1093/bioinformatics/btu677CrossRefPubMedGoogle Scholar
  17. 17.
    Finak G, Frelinger J, Jiang W et al (2014) OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 10(8):e1003806.  https://doi.org/10.1371/journal.pcbi.1003806CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aghaeepour N, Chattopadhyay P, Chikina M et al (2016) A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89(1):16–21.  https://doi.org/10.1002/cyto.a.22732CrossRefPubMedGoogle Scholar
  19. 19.
    Finak G, Langweiler M, Jaimes M et al (2016) Standardizing flow cytometry Immunophenotyping analysis from the human Immunophenotyping consortium. Sci Rep 6:20686.  https://doi.org/10.1038/srep20686CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096.  https://doi.org/10.1002/cyto.a.23030CrossRefPubMedGoogle Scholar
  21. 21.
    Rogers WT, Holyst HA (2009) FlowFP: a bioconductor package for fingerprinting flow cytometric data. Adv Bioinforma 2009:193947.  https://doi.org/10.1155/2009/193947CrossRefGoogle Scholar
  22. 22.
    Aghaeepour N, O’Neill K, Jalali A (2014) flowType: phenotyping Flow cytometry assays. R package version 2.14.0Google Scholar
  23. 23.
    Van Gassen S, Vens C, Dhaene T et al (2016) FloReMi: flow density survival regression using minimal feature redundancy. Cytometry A 89(1):22–29.  https://doi.org/10.1002/cyto.a.22734CrossRefPubMedGoogle Scholar
  24. 24.
    Anchang B, Hart TD, Bendall SC et al (2016) Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protoc 11(7):1264–1279.  https://doi.org/10.1038/nprot.2016.066CrossRefPubMedGoogle Scholar
  25. 25.
    van der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  26. 26.
    Bruggner RV, Bodenmiller B, Dill DL et al (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777.  https://doi.org/10.1073/pnas.1408792111CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aghaeepour N, Jalali A, O’Neill K et al (2012) RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 81(12):1022–1030.  https://doi.org/10.1002/cyto.a.22209CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    O’Neill K, Jalali A, Aghaeepour N et al (2014) Enhanced flowType/RchyOptimyx: a BioConductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30(9):1329–1330.  https://doi.org/10.1093/bioinformatics/btt770CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696.  https://doi.org/10.1126/science.1198704CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891.  https://doi.org/10.1038/nbt.1991CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee JA, Spidlen J, Boyce K et al (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73(10):926–930.  https://doi.org/10.1002/cyto.a.20623CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Courtot M, Meskas J, Diehl AD et al (2015) flowCL: ontology-based cell population labelling in flow cytometry. Bioinformatics 31(8):1337–1339.  https://doi.org/10.1093/bioinformatics/btu807CrossRefPubMedGoogle Scholar
  33. 33.
    R Programming. https://www.coursera.org/learn/r-programming. Accessed 19 Dec 2017
  34. 34.
    Statistics and R. https://www.edx.org/course/statistics-r-harvardx-ph525-1x-0. Accessed 19 Dec 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Terry Fox Laboratory, British Columbia Cancer AgencyVancouverCanada

Personalised recommendations