Advertisement

Mass Cytometry pp 193-215 | Cite as

Mass Cytometric Cell Cycle Analysis

  • Gregory K. BehbehaniEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1989)

Abstract

The regulated proliferation of cells is a critical factor in tumor progression, antineoplastic therapies, immune system regulation, and the cellular developmental of multicellular organisms. While measurement of cell cycle state by fluorescent flow cytometry is well established, mass cytometry allows the cell cycle to be measured along with large numbers of other antigens enabling characterization of the complex interactions between the cell cycle and wide variety of cellular processes. This method describes the use of mass cytometry for the analysis of cell cycle state for cells from three different sources: in vitro cultured cell lines, ex vivo human blood or bone marrow, and in vivo labeling of murine tissues. The method utilizes incorporation of 5-Iodo-2′-deoxyuridine (IdU), combined with measurement of phosphorylated retinoblastoma protein (pRb), Cyclin B1, and phosphorylated Histone H3 (pHH3). These measurements can be integrated into a gating strategy that enables clear separation of all five phases of the cell cycle.

Key words

Cell cycle Mass cytometry CyTOF Iodo-deoxyuridine Cyclin Retinoblastoma protein Phosphorylated Histone H3 Ki-67 

Notes

Acknowledgments

This chapter has been adapted from a previous chapter [10].

References

  1. 1.
    Darzynkiewicz Z, Juan G, Srour EF (2004) Differential staining of DNA and RNA. Curr Protoc Cytom Chapter 7:Unit 7 3.  https://doi.org/10.1002/0471142956.cy0703s30CrossRefPubMedGoogle Scholar
  2. 2.
    Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311.  https://doi.org/10.1385/1-59259-811-0:301CrossRefPubMedGoogle Scholar
  3. 3.
    Behbehani GK, Bendall SC, Clutter MR et al (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81(7):552–566.  https://doi.org/10.1002/cyto.a.22075CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Raval A, Behbehani GK, Nguyen le XT et al (2015) Reversibility of defective hematopoiesis caused by telomere shortening in telomerase knockout mice. PLoS One 10(7):e0131722.  https://doi.org/10.1371/journal.pone.0131722CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Behbehani GK, Samusik N, Bjornson ZB et al (2015) Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy. Cancer Discov 5(9):988–1003.  https://doi.org/10.1158/2159-8290.cd-15-0298CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Strauss-Albee DM, Fukuyama J, Liang EC et al (2015) Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 7(297):297ra115.  https://doi.org/10.1126/scitranslmed.aac5722CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang Q, Ornatsky OI, Koch CJ et al (2015) Single-cell measurement of the uptake, intratumoral distribution and cell cycle effects of cisplatin using mass cytometry. Int J Cancer 136(5):1202–1209.  https://doi.org/10.1002/ijc.29074CrossRefPubMedGoogle Scholar
  8. 8.
    Wei SC, Levine JH, Cogdill AP et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120–1133.e1117.  https://doi.org/10.1016/j.cell.2017.07.024CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55(2):61–70.  https://doi.org/10.1002/cyto.a.10072CrossRefPubMedGoogle Scholar
  10. 10.
    Behbehani GK (2018) Cell cycle analysis by mass cytometry. In: Lacorazza HD (ed) Cellular quiescence: methods and protocols. Springer, New York, pp 105–124.  https://doi.org/10.1007/978-1-4939-7371-2_8CrossRefGoogle Scholar
  11. 11.
    Darzynkiewicz Z, Gong J, Juan G et al (1996) Cytometry of cyclin proteins. Cytometry 25(1):1–13.  https://doi.org/10.1002/(sici)1097-0320(19960901)25:1<1::aid-cyto1>3.0.co;2-nCrossRefPubMedGoogle Scholar
  12. 12.
    Fienberg HG, Simonds EF, Fantl WJ et al (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81(6):467–475.  https://doi.org/10.1002/cyto.a.22067CrossRefPubMedGoogle Scholar
  13. 13.
    Chow S, Hedley D, Grom P et al (2005) Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 67(1):4–17.  https://doi.org/10.1002/cyto.a.20167CrossRefPubMedGoogle Scholar
  14. 14.
    Devine RD, Sekhri P, Behbehani GK (2018) Effect of storage time and temperature on cell cycle analysis by mass cytometry. Cytometry 93:1141–1149.  https://doi.org/10.1002/cyto.a.23630
  15. 15.
    Will B, Zhou L, Vogler TO et al (2012) Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 120(10):2076CrossRefGoogle Scholar
  16. 16.
    Behbehani GK, Thom C, Zunder ER et al (2014) Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 85(12):1011–1019.  https://doi.org/10.1002/cyto.a.22573CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zunder ER, Finck R, Behbehani GK et al (2015) Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc 10(2):316–333.  https://doi.org/10.1038/nprot.2015.020. http://www.nature.com/nprot/journal/v10/n2/abs/nprot.2015.020.html#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ren S, Rollins BJ (2004) Cyclin C/Cdk3 promotes Rb-dependent G0 exit. Cell 117(2):239–251.  https://doi.org/10.1016/s0092-8674(04)00300-9CrossRefPubMedGoogle Scholar
  19. 19.
    Goto H, Yasui Y, Nigg EA et al (2002) Aurora-B phosphorylates histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7(1):11–17.  https://doi.org/10.1046/j.1356-9597.2001.00498.xCrossRefPubMedGoogle Scholar
  20. 20.
    Hirata A, Inada K, Tsukamoto T et al (2004) Characterization of a monoclonal antibody, HTA28, recognizing a histone H3 phosphorylation site as a useful marker of M-phase cells. J Histochem Cytochem 52(11):1503–1509.  https://doi.org/10.1369/jhc.4A6285.2004CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Qiu P, Simonds EF, Bendall SC, et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. http://www.nature.com/nbt/journal/v29/n10/abs/nbt.1991.html#supplementary-information
  22. 22.
    Amir el AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552.  https://doi.org/10.1038/nbt.2594

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of HematologyThe Ohio State University and James Cancer HospitalColumbusUSA

Personalised recommendations