TRP Channels pp 99-110 | Cite as

Fluorescence-Based Functional Assays for Ca2+-Permeable ThermoTRP Channels

  • Celia Cordero-Sánchez
  • Irene Mudarra-Fraguas
  • Asia Fernández-CarvajalEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1987)


Transient receptor potential (TRP) ion channels are involved in a variety of fundamental physiological processes, and their malfunction produces numerous human diseases. Therefore, these proteins represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in emerging functional assays and instrumentation has enabled to readily monitor thermoTRP channel activity, and to develop high throughput screening (HTS) assays for TPR drug discovery. Chronologically, functional methods for ion channels include the ligand binding assay, flux-based assay, electrophysiology, fluorescence-based assays, and, more recently, automated electrophysiological assays. Here we described the methodology used to monitor the functionality of two thermoTRPs, TRPV1 and TRPM8, based on Ca2+ microfluorography using a 96-well fluorescence plate reader that allows the implementation of a medium- to high-throughput format ideal for drug screening.

Key words

Ion channels High-throughput screening Ligand binding assay Flux-based assay Fluorescence-based assay Drug discovery 



This work was supported by the Ministry of Economy and Competitiveness (SAF2016-66275-C02-01) and Generalitat Valenciana PROMETEO/2014/011.


  1. 1.
    Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120:3760–3772CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    García-Sanz N, Fernández-Carvajal A, Morenilla-Palao C et al (2004) Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24(23):5307–5314CrossRefPubMedGoogle Scholar
  3. 3.
    Kao JP, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264:8179–8184PubMedGoogle Scholar
  4. 4.
    Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178PubMedGoogle Scholar
  5. 5.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  6. 6.
    Song Y, Buelow B, Perraud AL et al (2008) Development and validation of a cell-based high-throughput screening assay for TRPM2 channel modulators. J Biomol Screen 13:54–61CrossRefPubMedGoogle Scholar
  7. 7.
    Miller M, Shi J, Zhu Y et al (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286:33436–33446CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Horikawa K (2015) Recent progress in the development of genetically encoded Ca2+ indicators. J Med Invest 62:24–28CrossRefPubMedGoogle Scholar
  9. 9.
    Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404CrossRefPubMedGoogle Scholar
  10. 10.
    Hanson GT, Hanson BJ (2008) Fluorescent probes for cellular assays. Comb Chem High Throughput Screen 11:505–513CrossRefPubMedGoogle Scholar
  11. 11.
    Bailey S, Macardle PJ (2006) A flow cytometric comparison of Indo-1 to Fluo-3 and Fura Red excited with low power lasers for detecting Ca2+ flux. J Immunol Methods 311:220–225CrossRefPubMedGoogle Scholar
  12. 12.
    Bandell M, Dubin AE, Petrus MJ et al (2006) High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci 9:493–500CrossRefPubMedGoogle Scholar
  13. 13.
    Castillo B, Porzgen P, Penner R et al (2010) Development and optimization of a high-throughput bioassay for TRPM7 ion channel inhibitors. J Biomol Screen 15:498–507CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miller M, Wu M, Xu J et al (2011) High-throughput screening of TRPC Channel ligands using cell-based assays. In: Zhu MX (ed) TRP channels. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  15. 15.
    Zicha S, Radresa O, Laplante P et al (2013) Novel methodology to identify TRPV1 antagonists independent of capsaicin activation. J Biomol Screen 18:544–555CrossRefPubMedGoogle Scholar
  16. 16.
    Luo J, Zhu Y, Zhu MX et al (2011) Cell-based calcium assay for medium to high throughput screening of TRP channel functions using FlexStation 3. J Vis Exp 54:e3149Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Celia Cordero-Sánchez
    • 1
  • Irene Mudarra-Fraguas
    • 1
  • Asia Fernández-Carvajal
    • 1
    Email author
  1. 1.Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain

Personalised recommendations