Advertisement

Measuring Apoptosis and Necrosis in Cholestatic Liver Injury

  • Benjamin L. Woolbright
  • Hartmut JaeschkeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1981)

Abstract

Cholestasis can be induced by obstruction of bile ducts or intrahepatic toxicity of drugs and chemicals. However, the mode of cell death during cholestasis, i.e., apoptosis or necrosis, has been controversial. There are fundamental reasons for the controversies, both of which are discussed here, namely the design of experiments and the use of parameters with limited specificity for a certain mode of cell death. Based on the assumption that cholestatic liver injury is caused by accumulation of bile acids, rodent (mainly rat) hepatocytes have been exposed to hydrophobic, glycine-conjugated bile acids, which resulted in apoptotic cell death. The problems with this experimental design are that in rodents bile acids are predominantly taurine conjugated and rodent hepatocytes are never exposed to these levels of glycine-conjugated bile acids. In contrast, taurine-conjugated bile acids trigger inflammatory gene activation in rodent hepatocytes and a necro-inflammatory injury in vivo. On the other hand, human hepatocytes are more resistant to glycine-conjugated bile acids and die by necrosis when exposed to high biliary levels of these bile acids. In this chapter, we describe multiple assays including the caspase activity assay, which is specific for apoptosis, and the general cell death assays alanine aminotransferase or lactate dehydrogenase activities in cell culture medium or plasma. An increase in these enzyme activities without caspase activity indicates necrotic cell death. Thus, both the experimental design and the selection of cell death parameters are critical for the relevance of the experiments for the human pathophysiology.

Key words

Apoptosis Bile acids Bile duct ligation Caspases Chemokines Glycine Inflammatory liver injury Necrosis Neutrophils Taurine 

References

  1. 1.
    Trottier J, Bialek A, Caron P, Straka RJ, Heathcote J, Milkiewicz P, Barbier O (2012) Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study. Dig Liver Dis 44:303–310CrossRefGoogle Scholar
  2. 2.
    Trottier J, Bialek A, Caron P, Straka RJ, Milkiewicz P, Barbier O (2011) Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS One 6:e22094CrossRefGoogle Scholar
  3. 3.
    Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BA, Schaap FG, Rust C, Beuers U (2012) Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. J Hepatol 57:133–140CrossRefGoogle Scholar
  4. 4.
    Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983CrossRefGoogle Scholar
  5. 5.
    De Haan L, van der Lely S, Warps AL, Hofsink P, Olthof PB, Lionarons DA, Mendes-Dias L, Bruinsma BG, Uygun K, Jaeschke H, Farrell GC, Teoh N, van Golen RF, Li T, Heger M (2018) Post-hepatectomy liver regeneration in the context of bile acid homeostasis and the gut-liver signaling axis. J Clin Transl Res 4(1):1–46PubMedPubMedCentralGoogle Scholar
  6. 6.
    Chatterjee S, Annaert P (2018) Drug-induced cholestasis: mechanisms, models, and markers. Curr Drug Metab 19(10):808–818CrossRefGoogle Scholar
  7. 7.
    Woolbright BL, Jaeschke H (2012) Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 18:4985–4993CrossRefGoogle Scholar
  8. 8.
    Fickert P, Trauner M, Fuchsbichler A, Zollner G, Wagner M, Marschall HU, Zatloukal K, Denk H (2005) Oncosis represents the main type of cell death in mouse models of cholestasis. J Hepatol 42:378–385CrossRefGoogle Scholar
  9. 9.
    Woolbright BL, Jaeschke H (2016) Therapeutic targets for cholestatic liver injury. Expert Opin Ther Targets 20:463–475CrossRefGoogle Scholar
  10. 10.
    Woolbright BL, Dorko K, Antoine DJ, Clarke JI, Gholami P, Li F, Kumer SC, Schmitt TM, Forster J, Fan F, Jenkins RE, Park BK, Hagenbuch B, Olyaee M, Jaeschke H (2015) Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol Appl Pharmacol 283:168–177CrossRefGoogle Scholar
  11. 11.
    Spivey JR, Bronk SF, Gores GJ (1993) Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Invest 92:17–24CrossRefGoogle Scholar
  12. 12.
    Patel T, Bronk SF, Gores GJ (1994) Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. J Clin Invest 94:2183–2192CrossRefGoogle Scholar
  13. 13.
    Rust C, Karnitz LM, Paya CV, Moscat J, Simari RD, Gores GJ (2000) The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 275:20210–20216CrossRefGoogle Scholar
  14. 14.
    Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101:2790–2799CrossRefGoogle Scholar
  15. 15.
    Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4:165–178CrossRefGoogle Scholar
  16. 16.
    Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH, Gores GJ (1999) Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 103:137–145CrossRefGoogle Scholar
  17. 17.
    Faubion WA, Gores GJ (1999) Death receptors in liver biology and pathobiology. Hepatology 29:1–4CrossRefGoogle Scholar
  18. 18.
    Sodeman T, Bronk SF, Roberts PJ, Miyoshi H, Gores GJ (2000) Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 278:G992–G999CrossRefGoogle Scholar
  19. 19.
    Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimoto R, El-Deiry W, Gores GJ (2001) The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem 276:38610–38618CrossRefGoogle Scholar
  20. 20.
    Reinehr R, Graf D, Haussinger D (2003) Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation. Gastroenterology 125:839–853CrossRefGoogle Scholar
  21. 21.
    Reinehr R, Haussinger D (2004) Inhibition of bile salt-induced apoptosis by cyclic AMP involves serine/threonine phosphorylation of CD95. Gastroenterology 126:249–262CrossRefGoogle Scholar
  22. 22.
    Qiao L, Studer E, Leach K, McKinstry R, Gupta S, Decker R, Kukreja R, Valerie K, Nagarkatti P, El Deiry W, Molkentin J, Schmidt-Ullrich R, Fisher PB, Grant S, Hylemon PB, Dent P (2001) Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol Biol Cell 12:2629–2645CrossRefGoogle Scholar
  23. 23.
    Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ (1999) Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 117:669–677CrossRefGoogle Scholar
  24. 24.
    Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ (2002) Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123:1323–1330CrossRefGoogle Scholar
  25. 25.
    Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468PubMedGoogle Scholar
  26. 26.
    Gujral JS, Liu J, Farhood A, Jaeschke H (2004) Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology 40:998–1007CrossRefGoogle Scholar
  27. 27.
    Gujral JS, Farhood A, Bajt ML, Jaeschke H (2003) Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology 38:355–363CrossRefGoogle Scholar
  28. 28.
    Woolbright BL, Antoine DJ, Jenkins RE, Bajt ML, Park BK, Jaeschke H (2013) Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 273:524–531CrossRefGoogle Scholar
  29. 29.
    Nalapareddy PD, Schüngel S, Hong JY, Manns MP, Jaeschke H, Vogel A (2009) The BH3-only protein bid does not mediate death-receptor-induced liver injury in obstructive cholestasis. Am J Pathol 175:1077–1085CrossRefGoogle Scholar
  30. 30.
    Schoemaker MH, Gommans WM, Conde de la Rosa L, Homan M, Klok P, Trautwein C, van Goor H, Poelstra K, Haisma HJ, Jansen PL, Moshage H (2003) Resistance of rat hepatocytes against bile acid-induced apoptosis in cholestatic liver injury is due to nuclear factor-kappa B activation. J Hepatol 39:153–161CrossRefGoogle Scholar
  31. 31.
    Afonso MB, Rodrigues PM, Simao AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J, Rodrigues CM (2016) Activation of necroptosis in human and experimental cholestasis. Cell Death Dis 7:e2390CrossRefGoogle Scholar
  32. 32.
    Yagmur E, Trautwein C, Leers MP, Gressner AM, Tacke F (2007) Elevated apoptosis-associated cytokeratin 18 fragments (CK18Asp386) in serum of patients with chronic liver diseases indicate hepatic and biliary inflammation. Clin Biochem 40:651–655CrossRefGoogle Scholar
  33. 33.
    Sekiguchi T, Umemura T, Fujimori N, Shibata S, Ichikawa Y, Kimura T, Joshita S, Komatsu M, Matsumoto A, Tanaka E, Ota M (2015) Serum cell death biomarkers for prediction of liver fibrosis and poor prognosis in primary biliary cirrhosis. PLoS One 10:e0131658CrossRefGoogle Scholar
  34. 34.
    Galle PR, Theilmann L, Raedsch R, Otto G, Stiehl A (1990) Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology 12:486–491CrossRefGoogle Scholar
  35. 35.
    Song P, Zhang Y, Klaassen CD (2011) Dose-response of five bile acids on serum and liver bile acid concentrations and hepatotoxicity in mice. Toxicol Sci 123:359–367CrossRefGoogle Scholar
  36. 36.
    Song P, Rockwell CE, Cui JY, Klaassen CD (2015) Individual bile acids have differential effects on bile acid signaling in mice. Toxicol Appl Pharmacol 283:57–64CrossRefGoogle Scholar
  37. 37.
    Woolbright BL, Li F, Xie Y, Farhood A, Fickert P, Trauner M, Jaeschke H (2014) Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicol Lett 228:56–66CrossRefGoogle Scholar
  38. 38.
    Fickert P, Fuchsbichler A, Marschall HU, Wagner M, Zollner G, Krause R, Zatloukal K, Jaeschke H, Denk H, Trauner M (2006) Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am J Pathol 168:410–422CrossRefGoogle Scholar
  39. 39.
    Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178:175–186CrossRefGoogle Scholar
  40. 40.
    Cai SY, Ouyang X, Chen Y, Soroka CJ, Wang J, Mennone A, Wang Y, Mehal WZ, Jain D, Boyer JL (2017) Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2:e90780CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Hong JY, Rockwell CE, Copple BL, Jaeschke H, Klaassen CD (2012) Effect of bile duct ligation on bile acid composition in mouse serum and liver. Liver Int 32:58–69CrossRefGoogle Scholar
  42. 42.
    Bathena SP, Thakare R, Gautam N, Mukherjee S, Olivera M, Meza J, Alnouti Y (2015) Urinary bile acids as biomarkers for liver diseases II. Signature profiles in patients. Toxicol Sci 143:308–318CrossRefGoogle Scholar
  43. 43.
    Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y (2018) Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 38(10):1323–1335CrossRefGoogle Scholar
  44. 44.
    Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y (2018) Species differences in bile acids II. Bile acid metabolism. J Appl Toxicol 38(10):1336–1352CrossRefGoogle Scholar
  45. 45.
    van Nieuwerk CM, Groen AK, Ottenhoff R, van Wijland M, van den Bergh Weerman MA, Tytgat GN, Offerhaus JJ, Oude Elferink RP (1997) The role of bile salt composition in liver pathology of mdr2 (−/−) mice: differences between males and females. J Hepatol 26:138–145CrossRefGoogle Scholar
  46. 46.
    Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, Helgason CD, Ackerley C, Phillips MJ, Ling V (2001) Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A 98:2011–2016CrossRefGoogle Scholar
  47. 47.
    Wang R, Lam P, Liu L, Forrest D, Yousef IM, Mignault D, Phillips MJ, Ling V (2003) Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein. Hepatology 38:1489–1499CrossRefGoogle Scholar
  48. 48.
    Wang R, Chen HL, Liu L, Sheps JA, Phillips MJ, Ling V (2009) Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump. Hepatology 50:948–956CrossRefGoogle Scholar
  49. 49.
    Chan R, Benet LZ (2018) Measures of BSEP Inhibition in vitro are not useful predictors of DILI. Toxicol Sci 162:499–508CrossRefGoogle Scholar
  50. 50.
    Slijepcevic D, Roscam Abbing RLP, Fuchs CD, Haazen LCM, Beuers U, Trauner M, Oude Elferink RPJ, van de Graaf SFJ (2018) Na(+)-taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice. Hepatology 68:1057–1069CrossRefGoogle Scholar
  51. 51.
    Rippin SJ, Hagenbuch B, Meier PJ, Stieger B (2001) Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33:776–782CrossRefGoogle Scholar
  52. 52.
    Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB (2010) A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos 38:988–994CrossRefGoogle Scholar
  53. 53.
    Qiu X, Zhang Y, Liu T, Shen H, Xiao Y, Bourner MJ, Pratt JR, Thompson DC, Marathe P, Humphreys WG, Lai Y (2016) Disruption of BSEP function in HepaRG cells alters bile acid disposition and is a susceptive factor to drug-induced cholestatic injury. Mol Pharm 13:1206–1216CrossRefGoogle Scholar
  54. 54.
    Kaschek D, Sharanek A, Guillouzo A, Timmer J, Weaver RJ (2018) A dynamic mathematical model of bile acid clearance in HepaRG cells. Toxicol Sci 161:48–57CrossRefGoogle Scholar
  55. 55.
    Woolbright BL, McGill MR, Yan H, Jaeschke H (2016) Bile acid-induced toxicity in heparg cells recapitulates the response in primary human hepatocytes. Basic Clin Pharmacol Toxicol 118:160–167CrossRefGoogle Scholar
  56. 56.
    Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H (2004) Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 286:G499–G507CrossRefGoogle Scholar
  57. 57.
    Yang M, Ramachandran A, Yan HM, Woolbright BL, Copple BL, Fickert P, Trauner M, Jaeschke H (2014) Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice. Toxicol Lett 224:186–195CrossRefGoogle Scholar
  58. 58.
    Katz SC, Ryan K, Ahmed N, Plitas G, Chaudhry UI, Kingham TP, Naheed S, Nguyen C, Somasundar P, Espat NJ, Junghans RP, Dematteo RP (2011) Obstructive jaundice expands intrahepatic regulatory T cells, which impair liver T lymphocyte function but modulate liver cholestasis and fibrosis. J Immunol 187:1150–1156CrossRefGoogle Scholar
  59. 59.
    Corrigan M, Hirschfield GM, Oo YH, Adams DH (2015) Autoimmune hepatitis: an approach to disease understanding and management. Br Med Bull 114:181–191CrossRefGoogle Scholar
  60. 60.
    Lleo A, Marzorati S, Anaya JM, Gershwin ME (2017) Primary biliary cholangitis: a comprehensive overview. Hepatol Int 11:485–499CrossRefGoogle Scholar
  61. 61.
    Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G (2016) Regulated cell death and adaptive stress responses. Cell Mol Life Sci 73:2405–2410CrossRefGoogle Scholar
  62. 62.
    Galluzzi L, Kepp O, Kroemer G (2016) Mitochondrial regulation of cell death: a phylogenetically conserved control. Microb Cell 3:101–108CrossRefGoogle Scholar
  63. 63.
    Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA (1998) Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol 160:3480–3486PubMedGoogle Scholar
  64. 64.
    Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, Burgart L, Garrity-Park M, van Vilsteren FG, Oliver LK, Rosen CB, Gores GJ (2007) Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant 7:218–225CrossRefGoogle Scholar
  65. 65.
    Wilson CH, Kumar S (2018) Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 25:1010–1024CrossRefGoogle Scholar
  66. 66.
    Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930CrossRefGoogle Scholar
  67. 67.
    Jaeschke H, Duan L, Akakpo JY, Farhood A, Ramachandran A (2018) The role of apoptosis in acetaminophen hepatotoxicity. Food Chem Toxicol 118:709–718CrossRefGoogle Scholar
  68. 68.
    Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125:1246–1257CrossRefGoogle Scholar
  69. 69.
    Woolbright BL, Bridges BW, Dunn W, Olson JC, Weinman SA, Jaeschke H (2017) Cell death and prognosis of mortality in alcoholic hepatitis patients using plasma keratin-18. Gene Expr 17:301–312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of UrologyUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Pharmacology, Toxicology and TherapeuticsUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations