Advertisement

A Rotavirus-Induced Mouse Model to Study Biliary Atresia and Neonatal Cholestasis

  • Sujit K. Mohanty
  • Bryan Donnelly
  • Haley Temple
  • Gregory M. TiaoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1981)

Abstract

Biliary atresia is a devastating neonatal cholangiopathy that affects both extra- and intrahepatic bile ducts progressing to fibrosis and end-stage liver disease by 2 years of age. Despite re-establishment of biliary drainage following a Kasai portoenterostomy (surgical procedure), many infants develop fibrosis requiring liver transplant. In the murine model of biliary atresia, rhesus rotavirus infection of newborn pups results in a cholangiopathy paralleling human biliary atresia and is used to study mechanistic aspects of the disease. The infected mice displayed histopathological signs similar to human biliary atresia, with bile duct obstruction, bile duct proliferation, and liver inflammation with fibrosis.

Key words

Rotavirus Biliary atresia Cholangiocytes Cholestasis 

Notes

Acknowledgments

This work was financially supported by the grants funded by National Institutes of Health (NIH) grant R01 DK-091566.

References

  1. 1.
    Chardot C, Buet C, Serinet MO et al (2013) Improving outcomes of biliary atresia: French national series 1986–2009. J Hepatol 58:1209–1217CrossRefGoogle Scholar
  2. 2.
    Diem HV, Evrard V, Vinh HT et al (2003) Pediatric liver transplantation for biliary atresia: results of primary grafts in 328 recipients. Transplantation 75:1692–1697CrossRefGoogle Scholar
  3. 3.
    Serinet MO, Wildhaber BE, Broue P et al (2009) Impact of age at Kasai operation on its results in late childhood and adolescence: a rational basis for biliary atresia screening. Pediatrics 123:1280–1286CrossRefGoogle Scholar
  4. 4.
    McDiarmid SV (2000) Liver transplantation. the pediatric challenge. Clin Liver Dis 4:879–927CrossRefGoogle Scholar
  5. 5.
    Ohi R, Hanamatsu M, Mochizuki I et al (1985) Progress in the treatment of biliary atresia. World J Surg 9:285–293CrossRefGoogle Scholar
  6. 6.
    Kelly DA (2003) Strategies for optimizing immunosuppression in adolescent transplant recipients: a focus on liver transplantation. Paediatr Drugs 3:177–183CrossRefGoogle Scholar
  7. 7.
    Marchetti P (2004) New-onset diabetes after transplantation. J Heart Lung Transplant 23:S194–S201CrossRefGoogle Scholar
  8. 8.
    Seipelt IM, Crawford SE, Rodgers S et al (2004) Hypercholesterolemia is common after pediatric heart transplantation: initial experience with pravastatin. J Heart Lung Transplant 23:317–322CrossRefGoogle Scholar
  9. 9.
    Dharnidharka VR, Tejani AH, Ho PL et al (2002) Post-transplant lymphoproliferative disorder in the United States: young Caucasian males are at highest risk. Am J Transplant 2:993–998CrossRefGoogle Scholar
  10. 10.
    Landing BH (1974) Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst-the concept of infantile obstructive cholangiopathy. Prog Pediatr Surg 6:113–139PubMedGoogle Scholar
  11. 11.
    Qiao H, Zhaori G, Jiang Z et al (1999) Detection of group C rotavirus antigen in bile duct and liver tissues of an infant with extrahepatic biliary atresia. Chin Med J 112:93–95PubMedGoogle Scholar
  12. 12.
    Riepenhoff-Talty M, Gouvea V, Evans MJ et al (1996) Detection of group C rotavirus in infants with extrahepatic biliary atresia. J Infect Dis 174:8–15CrossRefGoogle Scholar
  13. 13.
    Glaser JH, Balistreri WF, Morecki R (1984) Role of reovirus type 3 in persistent infantile cholestasis. J Pediatr 105:912–915CrossRefGoogle Scholar
  14. 14.
    Morecki R, Glaser JH, Cho S et al (1982) Biliary atresia and reovirus type 3 infection. N Engl J Med 307:481–484CrossRefGoogle Scholar
  15. 15.
    Morecki R, Glaser JH, Cho S (1984) Biliary atresia and reovirus type 3 infection. N Engl J Med 310:1610PubMedGoogle Scholar
  16. 16.
    Domiati-Saad R, Dawson DB, Margraf LR et al (2000) Cytomegalovirus and human herpesvirus 6, but not human papillomavirus, are present in neonatal giant cell hepatitis and extrahepatic biliary atresia. Pediatr Dev Pathol 3:367–373CrossRefGoogle Scholar
  17. 17.
    Fischler B, Ehrnst A, Forsgren M et al (1998) The viral association of neonatal cholestasis in Sweden: a possible link between cytomegalovirus infection and extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 27:57–64CrossRefGoogle Scholar
  18. 18.
    Drut R, Drut RM, Gomez MA et al (1998) Presence of human papillomavirus in extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 27:530–535CrossRefGoogle Scholar
  19. 19.
    Mack CL (2007) The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis 27:233–242CrossRefGoogle Scholar
  20. 20.
    Sokol RJ, Mack C (2001) Etiopathogenesis of biliary atresia. Semin Liver Dis 21:517–524CrossRefGoogle Scholar
  21. 21.
    Bezerra JA, Tiao G, Ryckman FC et al (2002) Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 360:1653–1659CrossRefGoogle Scholar
  22. 22.
    Mohanty SK, Ivantes CA, Mourya R et al (2010) Macrophages are targeted by rotavirus in experimental biliary atresia and induce neutrophil chemotaxis by Mip2/Cxcl2. Pediatr Res 67:345–351CrossRefGoogle Scholar
  23. 23.
    Shivakumar P, Sabla GE, Whitington P et al (2009) Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia. J Clin Invest 119:2281–2290CrossRefGoogle Scholar
  24. 24.
    Walther A, Mohanty SK, Donnelly B et al (2015) Rhesus rotavirus VP4 sequence-specific activation of mononuclear cells is associated with cholangiopathy in murine biliary atresia. Am J Physiol Gastrointest Liver Physiol 309:G466–G474CrossRefGoogle Scholar
  25. 25.
    Riepenhoff-Talty M, Schaekel K et al (1993) Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res 33:394–399PubMedGoogle Scholar
  26. 26.
    Petersen C, Grasshoff S, Luciano L (1998) Diverse morphology of biliary atresia in an animal model. J Hepatol 28:603–607CrossRefGoogle Scholar
  27. 27.
    Czech-Schmidt G, Verhagen W, Szavay P et al (2001) Immunological gap in the infectious animal model for biliary atresia. J Surg Res 101:62–67CrossRefGoogle Scholar
  28. 28.
    Mohanty SK, Donnelly B, Bondoc A et al (2013) Rotavirus replication in the cholangiocyte mediates the temporal dependence of murine biliary atresia. PLoS One 8:e69069CrossRefGoogle Scholar
  29. 29.
    Jafri M, Donnelly B, McNeal M et al (2007) MAPK signaling contributes to rotaviral-induced cholangiocyte injury and viral replication. Surgery 142:192–201CrossRefGoogle Scholar
  30. 30.
    Jafri M, Donnelly B, Bondoc A et al (2009) Cholangiocyte secretion of chemokines in experimental biliary atresia. J Pediatr Surg 44:500–507CrossRefGoogle Scholar
  31. 31.
    Mohanty SK, Donnelly B, Lobeck I et al (2017) The SRL peptide of rhesus rotavirus VP4 protein governs cholangiocyte infection and the murine model of biliary atresia. Hepatology 65:1278–1292CrossRefGoogle Scholar
  32. 32.
    Allen SR, Jafri M, Donnelly B et al (2007) Effect of rotavirus strain on the murine model of biliary atresia. J Virol 81:1671–1679CrossRefGoogle Scholar
  33. 33.
    Wang W, Donnelly B, Bondoc A et al (2011) The rhesus rotavirus gene encoding VP4 is a major determinant in the pathogenesis of biliary atresia in newborn mice. J Virol 85:9069–9077CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sujit K. Mohanty
    • 1
  • Bryan Donnelly
    • 1
  • Haley Temple
    • 1
  • Gregory M. Tiao
    • 1
    Email author
  1. 1.Division of Pediatric General and Thoracic SurgeryCincinnati Children’s Hospital Medical CentreCincinnatiUSA

Personalised recommendations