Advertisement

Laser Capture Microdissection of Murine Embryonic Neural Crest Cells

  • Robert M. Greene
  • Irina Smolenkova
  • Michele PisanoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1976)

Abstract

The purpose of this chapter is to provide a step-by-step protocol to enable performance of laser capture microdissection (LCM) on tissue sections from mammalian embryos or postnatal organism stages in order to collect pure populations of neural crest cells from which sufficient amounts of nucleic acids and/or protein can be obtained for quantitative analysis. The methods (1) define a strategy to genetically and indelibly label mammalian neural crest-derived cells with a fluorescent marker, thus enabling their isolation throughout the pre- and postnatal life span of the organism, and (2) describe subsequent isolation by LCM of the labeled neural crest cells, or their derivatives, from embryonic/postnatal tissue cryosections. Details are provided for using the Arcturus PixCell®IIe Laser Capture Microdissection System (Arcturus) and CapSure LCM Caps (Thermo Fisher Scientific), to which the selected cells adhere upon laser-mediated capture. The protocol outlined herein can be applied in any situation wherein limited cellular samples are available for isolation by LCM. Nucleic acids or proteins can be extracted from LCM-isolated cells and processed for high-density gene expression profiling analyses (microarrays or RNA sequencing), Real-Time PCR (q-PCR) for specific candidate gene expression, investigation of DNA methylation, as well as for varied protein analyses.

Key words

Neural crest cells GFP Laser capture microdissection Embryonic 

Notes

Acknowledgments

This report, and any data presented, was supported in part by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103453, and PHS research grants HD053509 and DE018215.

References

  1. 1.
    Emmert-Buck M, Bonner R, Smith P et al (1996) Laser capture microdissection. Science 274:998–1001CrossRefGoogle Scholar
  2. 2.
    Brunskill E, Potter A, Distasio A (2014) A gene expression atlas of early craniofacial development. Dev Biol 391:133–146CrossRefGoogle Scholar
  3. 3.
    Potter A, Potter S (2015) Molecular anatomy of palate development. PLoS One 10:e0132662CrossRefGoogle Scholar
  4. 4.
    Bhatacherjee V, Mukhopadhyay P, Singh S et al (2004) Laser capture microdissection of GFP-labeled neural crest cells from embryonic craniofacial tissue. Genesis 39:58–64CrossRefGoogle Scholar
  5. 5.
    Bhatacherjee V, Greene RM, Pisano MM (2005) Meeting report: Cambridge Healthtech Institute’s third annual laser capture microscopy – cutting-edge applications. Expert Rev Molec Diagnostics 5:487–491CrossRefGoogle Scholar
  6. 6.
    Bhatacherjee V, Mukhopadhyay P, Singh S et al (2007) Neural crest and mesoderm lineage-dependent gene expression in developing orofacial tissue. Differentiation 75:463–477CrossRefGoogle Scholar
  7. 7.
    Singh S, Bhatacherjee V, Mukhopadhyay P et al (2005) Fluorescence-activated cell sorting of EGFP-labeled neural crest cells from murine embryonic craniofacial tissue. J Biomed Biotechnol 3:232–237CrossRefGoogle Scholar
  8. 8.
    Nawshad A, LaGamba D, Olsen B, Hay E (2004) Laser capture microdissection (LCM) for analysis of gene expression in specific tissues during embryonic epithelial–mesenchymal transformation. Dev Dynamics 230:529–534CrossRefGoogle Scholar
  9. 9.
    Espina V, Wulfkuhle J, Calvert V et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603CrossRefGoogle Scholar
  10. 10.
    DeCarlo K, Emley A, Dadzie O, Mahalingam M (2011) Laser capture microdissection: methods and applications. In: Graeme IM (ed) Laser capture microdissection: methods and protocols, methods in molecular biology, vol 755. Springer Science + Business Media, pp 1–15Google Scholar
  11. 11.
    Cheng L, Zhang S, MacLennan G et al (2013) Laser-assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol 21:31–47PubMedGoogle Scholar
  12. 12.
    Datta S, Malhotra L, Dickerson R et al (2015) Laser capture microdissection: big data from small samples. Histol Histopathol 30:1255–1269PubMedPubMedCentralGoogle Scholar
  13. 13.
    Thennavan A, Sharma M, Chandrashekar C et al (2017) Exploring the potential of laser capture microdissection technology in integrated oral biosciences. Oral Dis 23:737–748CrossRefGoogle Scholar
  14. 14.
    Danielian P, Muccino D, Rowitch D et al (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre-recombinase. Curr Biol 98:1323–1326CrossRefGoogle Scholar
  15. 15.
    Wilkinson D, Bailes J, Champion J, McMahon A (1987) Expression of the proto-oncogene int1 is restricted to specific neural cells in the developing mouse embryo. Cell 50:79–88CrossRefGoogle Scholar
  16. 16.
    Novak A, Guo C, Yang W et al (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155CrossRefGoogle Scholar
  17. 17.
    Kroneis T, Ye J, Gillespie K (2016) Laser capture and single cell genotyping from frozen tissue sections. Methods Mol Biol 1433:159–167CrossRefGoogle Scholar
  18. 18.
    Hoffmann J, Wilhelm J, Kwapiszewska G (2017) Laser capture microdissection of tissue sections for high-throughput RNA analysis. Methods Mol Biol 1627:325–340CrossRefGoogle Scholar
  19. 19.
    Adebayo M, Ahsan N, Zabala V et al (2017) Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget 8:26041–26056Google Scholar
  20. 20.
    Warner DR, Mukhopadhyay P, Brock G et al (2014) MicroRNA expression profiling of the developing murine upper lip. Dev Growth Differentiation 56:434–447CrossRefGoogle Scholar
  21. 21.
    Warner D, Ding J, Mukhopadhyay P et al (2015) Temporal expression of miRNAs in laser capture microdissected palate medial edge epithelium from TGFβ3-null mouse fetuses miRNA. Microrna 4:64–71CrossRefGoogle Scholar
  22. 22.
    Redmond L, Dumur C, Archer K et al (2008) Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells. Dev Dyn 237:436–446CrossRefGoogle Scholar
  23. 23.
    Redmond L, Pang C, Dumur C et al (2014) Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays. Methods Mol Biol 1092:43–60CrossRefGoogle Scholar
  24. 24.
    Albino D, Brizzolara A, Moretti S et al (2011) Gene expression profiling identifies eleven DNA repair genes down-regulated during mouse neural crest cell migration. Int J Dev Biol 55:65–72CrossRefGoogle Scholar
  25. 25.
    Simões-Costa M, Bronner M (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142:242–257CrossRefGoogle Scholar
  26. 26.
    Seelan R, Warner D, Mukhopadhyay P et al (2013) Epigenetic analysis of laser capture microdissected fetal epithelia. Anal Biochem 442:68–74CrossRefGoogle Scholar
  27. 27.
    Liu A (2010) Laser capture microdissection in the tissue biorepository. J Biomol Tech 21:120–125PubMedPubMedCentralGoogle Scholar
  28. 28.
    Chokechanachaisakul U, Kaneko T, Okiji T et al (2010) Laser capture microdissection in dentistry. Int J Dent 2010:592694CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Robert M. Greene
    • 1
  • Irina Smolenkova
    • 1
  • Michele Pisano
    • 1
    Email author
  1. 1.Division of Craniofacial Development and Anomalies, Department of Surgical and Hospital DentistryUniversity of Louisville School of DentistryLouisvilleUSA

Personalised recommendations