Advertisement

Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications

  • Giuseppe Paglia
  • Giuseppe Astarita
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1978)

Abstract

Ion mobility (IM) spectrometry can separate gas-phase ions according to their charge, molecular shape, and size. In recent years, several IM technologies have been integrated with mass spectrometry (MS) and launched as commercially available instrumentation for metabolomics analysis. The addition of IM to MS-based metabolomics workflows provides an additional degree of separation to chromatography and MS resolving power, improving peak capacity and signal-to-noise ratio. Moreover, it makes possible to experimentally derive collision cross section (CCS), which can be used as an additional coordinate for metabolite identification, together with accurate mass and fragmentation information. The addition of CCS to current metabolome database would allow to filter and score molecules based on their CCS values, adding more confidence in the identification process during metabolomics experiments.

In this chapter, we present procedures for the integration of travelling-wave (TW)-IM into traditional MS-based metabolomics workflows.

Keywords

Ion mobility Collision cross section Drift time Travelling-wave ion mobility Metabolomics Mass spectrometry 

References

  1. 1.
    Rainville PD, Wilson ID, Nicholson JK et al (2017) Ion mobility spectrometry combined with ultra performance liquid chromatography/mass spectrometry for metabolic phenotyping of urine: effects of column length, gradient duration and ion mobility spectrometry on metabolite detection. Anal Chim Acta 982:1–8CrossRefGoogle Scholar
  2. 2.
    Kanu AB, Dwivedi P, Tam M et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22CrossRefGoogle Scholar
  3. 3.
    Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32:43–71CrossRefGoogle Scholar
  4. 4.
    May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436CrossRefGoogle Scholar
  5. 5.
    Dwivedi P, Schultz AJ, Hill HH Jr (2010) Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 298:78–90CrossRefGoogle Scholar
  6. 6.
    Dwivedi P, Puzon G, Tam M et al (2010) Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source. J Mass Spectrom 45:1383–1393CrossRefGoogle Scholar
  7. 7.
    Shah V, Castro-Perez JM, McLaren DG et al (2013) Enhanced data-independent analysis of lipids using ion mobility-TOFMS E to unravel quantitative and qualitative information in human plasma. Rapid Commun Mass Spectrom 27:2195–2200CrossRefGoogle Scholar
  8. 8.
    Hart PJ, Francese S, Claude E et al (2011) MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 401:115–125CrossRefGoogle Scholar
  9. 9.
    Ahonen L, Fasciotti M, af Gennäs GB et al (2013) Separation of steroid isomers by ion mobility mass spectrometry. J Chromatogr A 1310:133–137CrossRefGoogle Scholar
  10. 10.
    Malkar A, Devenport NA, Martin HJ et al (2013) Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography-ion mobility-mass spectrometry. Metabolomics 9:1192–1201CrossRefGoogle Scholar
  11. 11.
    Kaplan K, Dwivedi P, Davidson S et al (2009) Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). Anal Chem 81:7944–7953CrossRefGoogle Scholar
  12. 12.
    Zhang X, Romm M, Zheng X et al (2016) SPE-IMS-MS: an automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin Mass Spectrom 2:1–10CrossRefGoogle Scholar
  13. 13.
    Stow SM, Causon TJ, Zheng X et al (2017) An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055CrossRefGoogle Scholar
  14. 14.
    Zheng X, Aly NA, Zhou Y et al (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736CrossRefGoogle Scholar
  15. 15.
    Zhou Z, Tu J, Zhu ZJ (2018) Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol 42:34–41CrossRefGoogle Scholar
  16. 16.
    Zhou Z, Tu J, Xiong X et al (2017) LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal Chem 89:9559–9566CrossRefGoogle Scholar
  17. 17.
    Righetti L, Bergmann A, Galaverna G et al (2018) Ion mobility-derived collision cross section database: application to mycotoxin analysis. Anal Chim Acta 1014:50–57CrossRefGoogle Scholar
  18. 18.
    Pacini T, Fu W, Gudmundsson S et al (2015) Multidimensional analytical approach based on UHPLC-UV-ion mobility-MS for the screening of natural pigments. Anal Chem 87:2593–2599CrossRefGoogle Scholar
  19. 19.
    Paglia G, Angel P, Williams JP et al (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87:1137–1144CrossRefGoogle Scholar
  20. 20.
    Paglia G, Williams JP, Menikarachchi LC et al (2014) Ion mobility-derived collision cross-sections to support metabolomics applications. Anal Chem 86:3985–3993CrossRefGoogle Scholar
  21. 21.
    May JC, Morris CB, McLean JA (2017) Ion mobility collision cross section compendium. Anal Chem 89:1032–1044CrossRefGoogle Scholar
  22. 22.
    Bush MF, Campuzano IDG, Robinson CV (2012) Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84:7124–7130CrossRefGoogle Scholar
  23. 23.
    Hines KM, May JC, McLean JA et al (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88:7329–7336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Giuseppe Paglia
    • 1
  • Giuseppe Astarita
    • 2
  1. 1.Institute for BiomedicineEURAC ResearchBolzanoItaly
  2. 2.Department of Biochemistry and Molecular & Cellular BiologyGeorgetown UniversityWashingtonUSA

Personalised recommendations