Skip to main content

Molecular Interaction Networks to Select Factors for Cell Conversion

  • Protocol
  • First Online:
Computational Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1975))

Abstract

The process of identifying sets of transcription factors that can induce a cell conversion can be time-consuming and expensive. To help alleviate this, a number of computational tools have been developed which integrate gene expression data with molecular interaction networks in order to predict these factors. One such approach is Mogrify, an algorithm which ranks transcriptions factors based on their regulatory influence in different cell types and tissues. These ranks are then used to identify a nonredundant set of transcription factors to promote cell conversion between any two cell types/tissues. Here we summarize the important concepts and data sources that were used in the implementation of this approach. Furthermore, we describe how the associated web resource (www.mogrify.net) can be used to tailor predictions to specific experimental scenarios, for instance, limiting the set of possible transcription factors and including domain knowledge. Finally, we describe important considerations for the effective selection of reprogramming factors. We envision that such data-driven approaches will become commonplace in the field, rapidly accelerating the progress in stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 10 July 2019

    This chapter was published without including the “Conflict of Interest” section given by the author along with the corrected proof.

References

  1. D’Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA, Saini JS, Cohick E, Charniga C, Dadon D, Hannett NM et al (2015) A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep 5:763–775

    Google Scholar 

  2. Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ (2014) CellNet: network biology applied to stem cell engineering. Cell 158:903–915

    CAS  Google Scholar 

  3. Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, FANTOM Consortium, Suzuki H, Nefzger CM, Daub CO et al (2016) A predictive computational framework for direct reprogramming between human cell types. Nat Genet 48:331–335

    CAS  Google Scholar 

  4. Thomas DB (1971) The differentiation of transplanted haematopoietic cells derived from bone marrow, spleen and fetal liver. J Anat 110:297–306

    CAS  Google Scholar 

  5. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    CAS  Google Scholar 

  6. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463

    CAS  Google Scholar 

  7. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    CAS  Google Scholar 

  8. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  Google Scholar 

  9. Lassar AB, Paterson BM, Weintraub H (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47:649–656

    CAS  Google Scholar 

  10. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM (2009) Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 460:1154

    CAS  Google Scholar 

  11. Caiazzo M, Giannelli S, Valente P, Lignani G, Carissimo A, Sessa A, Colasante G, Bartolomeo R, Massimino L, Ferroni S et al (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Rep 4:25–36

    CAS  Google Scholar 

  12. Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K et al (2014) MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J 33:1565–1581

    CAS  Google Scholar 

  13. Islas JF, Liu Y, Weng K-C, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D et al (2012) Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci U S A 109:13016–13021

    CAS  Google Scholar 

  14. Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya K et al (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A 110:12667–12672

    CAS  Google Scholar 

  15. Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R et al (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A 110:5588–5593

    CAS  Google Scholar 

  16. Fu J-D, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D (2013) Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep 1:235–247

    CAS  Google Scholar 

  17. Ishii R, Kami D, Toyoda M, Makino H, Gojo S, Ishii T, Umezawa A (2012) Placenta to cartilage: direct conversion of human placenta to chondrocytes with transformation by defined factors. Mol Biol Cell 23:3511–3521

    CAS  Google Scholar 

  18. Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, He Y, Huang Q, Tan A-C, Zhang D et al (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 22:321–332

    CAS  Google Scholar 

  19. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348

    CAS  Google Scholar 

  20. Wong WT, Cooke JP (2016) Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng 7:2041731416628329

    Google Scholar 

  21. Nouri M, Deezagi A, Ebrahimi M (2016) Reprogramming of human peripheral blood monocytes to erythroid lineage by blocking of the PU-1 gene expression. Ann Hematol 95:549–556

    CAS  Google Scholar 

  22. Ho S-M, Hartley BJ, Tcw J, Beaumont M, Stafford K, Slesinger PA, Brennand KJ (2016) Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 101:113–124

    CAS  Google Scholar 

  23. Wamaitha SE, del Valle I, Cho LTY, Wei Y, Fogarty NME, Blakeley P, Sherwood RI, Ji H, Niakan KK (2015) Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells. Genes Dev 29:1239–1255

    CAS  Google Scholar 

  24. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    CAS  Google Scholar 

  25. Sandler VM, Lis R, Liu Y, Kedem A, James D, Elemento O, Butler JM, Scandura JM, Rafii S (2014) Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511:312–318

    CAS  Google Scholar 

  26. Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526

    CAS  Google Scholar 

  27. Du Y, Wang J, Jia J, Song N, Xiang C, Xu J, Hou Z, Su X, Liu B, Jiang T et al (2014) Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14:394–403

    CAS  Google Scholar 

  28. Wang XL, Hu P, Guo XR, Yan D, Yuan Y, Yan SR, Li DS (2014) Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro-synthesized pancreatic-duodenal homebox 1 messenger RNA. Cytotherapy 16:1519–1527

    CAS  Google Scholar 

  29. Rapino F, Robles EF, Richter-Larrea JA, Kallin EM, Martinez-Climent JA, Graf T (2013) C/EBPα induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep 3:1153–1163

    CAS  Google Scholar 

  30. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng P-Y, Klyachko VA, Nerbonne JM, Yoo AS (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:311–323

    CAS  Google Scholar 

  31. Yang R, Zheng Y, Li L, Liu S, Burrows M, Wei Z, Nace A, Herlyn M, Cui R, Guo W et al (2014) Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat Commun 5:5807

    CAS  Google Scholar 

  32. Park H-W, Cho J-S, Park C-K, Jung SJ, Park C-H, Lee S-J, Oh SB, Park Y-S, Chang M-S (2012) Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells. PLoS One 7:e35244

    CAS  Google Scholar 

  33. Lattanzi L, Salvatori G, Coletta M, Sonnino C, Cusella De Angelis MG, Gioglio L, Murry CE, Kelly R, Ferrari G, Molinaro M et al (1998) High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J Clin Invest 101:2119–2128

    CAS  Google Scholar 

  34. Hendry CE, Vanslambrouck JM, Ineson J, Suhaimi N, Takasato M, Rae F, Little MH (2013) Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 24:1424–1434

    CAS  Google Scholar 

  35. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G (2014) Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15:497–506

    CAS  Google Scholar 

  36. Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109:2527–2532

    CAS  Google Scholar 

  37. Mitchell RR, Szabo E, Benoit YD, Case DT, Mechael R, Alamilla J, Lee JH, Fiebig-Comyn A, Gillespie DC, Bhatia M (2014) Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells Dev 23:1937–1946

    CAS  Google Scholar 

  38. Lee J-H, Mitchell RR, McNicol JD, Shapovalova Z, Laronde S, Tanasijevic B, Milsom C, Casado F, Fiebig-Comyn A, Collins TJ et al (2015) Single transcription factor conversion of human blood fate to NPCs with CNS and PNS developmental capacity. Cell Rep 11:1367–1376

    CAS  Google Scholar 

  39. Liao W, Huang N, Yu J, Jares A, Yang J, Zieve G, Avila C, Jiang X, Zhang X-B, Ma Y (2015) Direct conversion of cord blood CD34+ cells into neural stem cells by OCT4. Stem Cells Transl Med 4:755–763

    CAS  Google Scholar 

  40. Zhao P, Zhu T, Lu X, Zhu J, Li L (2015) Neurogenin 2 enhances the generation of patient-specific induced neuronal cells. Brain Res 1615:51–60

    CAS  Google Scholar 

  41. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14:188–202

    CAS  Google Scholar 

  42. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    CAS  Google Scholar 

  43. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118

    CAS  Google Scholar 

  44. Hsu Y-C, Chen S-L, Wang Y-J, Chen Y-H, Wang D-Y, Chen L, Chen C-H, Chen H-H, Chiu I-M (2014) Signaling adaptor protein SH2B1 enhances neurite outgrowth and accelerates the maturation of human induced neurons. Stem Cells Transl Med 3:713–722

    CAS  Google Scholar 

  45. Zhou C, Gu H, Fan R, Wang B, Lou J (2015) MicroRNA 302/367 cluster effectively facilitates direct reprogramming from human fibroblasts into functional neurons. Stem Cells Dev 24:2746–2755

    CAS  Google Scholar 

  46. Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan MA, Lie DC, Dellavalle A et al (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471–476

    CAS  Google Scholar 

  47. Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H, Kubo T, Yamamoto T, Kanamura N, Mazda O (2015) Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A 112:6152–6157

    CAS  Google Scholar 

  48. Sangan CB, Jover R, Heimberg H, Tosh D (2015) In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Mol Cell Endocrinol 399:50–59

    CAS  Google Scholar 

  49. Berneman-Zeitouni D, Molakandov K, Elgart M, Mor E, Fornoni A, Domínguez MR, Kerr-Conte J, Ott M, Meivar-Levy I, Ferber S (2014) The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One 9:e87812

    Google Scholar 

  50. Mauda-Havakuk M, Litichever N, Chernichovski E, Nakar O, Winkler E, Mazkereth R, Orenstein A, Bar-Meir E, Ravassard P, Meivar-Levy I et al (2011) Ectopic PDX-1 expression directly reprograms human keratinocytes along pancreatic insulin-producing cells fate. PLoS One 6:e26298

    CAS  Google Scholar 

  51. Chiou S-H, Chen S-J, Chang Y-L, Chen Y-C, Li H-Y, Chen D-T, Wang H-H, Chang C-M, Chen Y-J, Ku H-H (2011) MafA promotes the reprogramming of placenta-derived multipotent stem cells into pancreatic islets-like and insulin+ cells. J Cell Mol Med 15:612–624

    CAS  Google Scholar 

  52. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  Google Scholar 

  53. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  Google Scholar 

  54. Deng W, Cao X, Chen J, Zhang Z, Yu Q, Wang Y, Shao G, Zhou J, Gao X, Yu J et al (2015) MicroRNA replacing oncogenic Klf4 and c-Myc for generating iPS cells via cationized Pleurotus eryngii polysaccharide-based nanotransfection. ACS Appl Mater Interfaces 7:18957–18966

    CAS  Google Scholar 

  55. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Schöler HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–643

    CAS  Google Scholar 

  56. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    CAS  Google Scholar 

  57. Zhang K, Liu G-H, Yi F, Montserrat N, Hishida T, Esteban CR, Izpisua Belmonte JC (2014) Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell 5:48–58

    Google Scholar 

  58. Li P, Sun X, Ma Z, Liu Y, Jin Y, Ge R, Hao L, Ma Y, Han S, Sun H et al (2016) Transcriptional reactivation of OTX2, RX1 and SIX3 during reprogramming contributes to the generation of RPE cells from human iPSCs. Int J Biol Sci 12:505–517

    CAS  Google Scholar 

  59. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218

    CAS  Google Scholar 

  60. Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC (2014) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 16:902–908

    CAS  Google Scholar 

  61. Chen Y, Wang K, Gong YG, Khoo SK, Leach R (2013) Roles of CDX2 and EOMES in human induced trophoblast progenitor cells. Biochem Biophys Res Commun 431:197–202

    CAS  Google Scholar 

  62. Ginsberg M, James D, Ding B-S, Nolan D, Geng F, Butler JM, Schachterle W, Pulijaal VR, Mathew S, Chasen ST et al (2012) Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 151:559–575

    CAS  Google Scholar 

  63. Anders S (2010) Analysing RNA-Seq data with the DESeq package. Mol Biol. Available at: http://owl.fish.washington.edu/halfshell/bu-git-repos/LabDocs/code/DESeq/MANUAL_DESeq.pdf

  64. Kulakovskiy IV, Medvedeva YA, Schaefer U, Kasianov AS, Vorontsov IE, Bajic VB, Makeev VJ (2013) HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res 41:D195–D202

    CAS  Google Scholar 

  65. Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov F (2017) GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res 45:D61–D67

    CAS  Google Scholar 

  66. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    CAS  Google Scholar 

  67. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    CAS  Google Scholar 

  68. FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470

    Google Scholar 

  69. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25

    CAS  Google Scholar 

  70. The Gene Ontology Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res 45:D331–D338

    Google Scholar 

  71. Wingender E, Schoeps T, Haubrock M, Dönitz J (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res 43:D97–D102

    CAS  Google Scholar 

  72. Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC, Sladek R (2009) TFCat: the curated catalog of mouse and human transcription factors. Genome Biol 10:R29

    Google Scholar 

  73. Balwierz PJ, Pachkov M, Arnold P, Gruber AJ, Zavolan M, van Nimwegen E (2014) ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res 24:869–884

    CAS  Google Scholar 

  74. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755

    CAS  Google Scholar 

  75. Yuri S, Fujimura S, Nimura K, Takeda N, Toyooka Y, Fujimura Y-I, Aburatani H, Ura K, Koseki H, Niwa H et al (2009) Sall4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression. Stem Cells 27:796–805

    CAS  Google Scholar 

  76. Masui S, Ohtsuka S, Yagi R, Takahashi K, Ko MSH, Niwa H (2008) Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev Biol 8:45

    Google Scholar 

  77. Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14:529–541

    CAS  Google Scholar 

  78. Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339

    CAS  Google Scholar 

Download references

Conflict of Interest

Owen Rackham, Julian Gough and Jose Polo are founders and directors of Cell Mogrify Ltd. The other authors do not declare any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. L. Rackham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ouyang, J.F., Kamaraj, U.S., Polo, J.M., Gough, J., Rackham, O.J.L. (2019). Molecular Interaction Networks to Select Factors for Cell Conversion. In: Cahan, P. (eds) Computational Stem Cell Biology. Methods in Molecular Biology, vol 1975. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9224-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9224-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9223-2

  • Online ISBN: 978-1-4939-9224-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics