Advertisement

Synthesis, Physicochemical, and Biological Evaluation of Spherical Nucleic Acids for RNAi-Based Therapy in Glioblastoma

  • Serena Tommasini-Ghelfi
  • Andrew Lee
  • Chad A. MirkinEmail author
  • Alexander H. SteghEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1974)

Abstract

Spherical nucleic acids (SNAs), an emerging class of gene-regulatory nanotherapeutics, typically consist of a nanoparticle core densely functionalized with a shell of radially oriented small interfering RNA (siRNA) oligonucleotides, microRNA (miRNA) mimics, or antagonists. The unique three-dimensional SNA structure regardless of core type (e.g., gold or lipids) confers heightened resistance to nuclease-mediated degradation and accounts for robust cell entry in the absence of auxiliary transfection vehicles. In murine models of glioblastoma (GBM), the most aggressive and prevalent form of malignant brain cancers, systemically administered siRNA or miRNA-conjugated SNAs penetrated blood-brain and blood-tumor barriers and robustly reduced tumor progression. Here, we describe methods for the synthesis and physicochemical and biological characterization of SNA gene silencing effects in glioma cells in vitro and in patient-derived xenograft models in vivo.

Keywords

RNA interference Biotherapeutic gene silencing Spherical nucleic acids Nanotherapeutic 

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996.  https://doi.org/10.1056/NEJMoa043330CrossRefPubMedGoogle Scholar
  2. 2.
    McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3(10):737–747.  https://doi.org/10.1038/nrg908CrossRefPubMedGoogle Scholar
  3. 3.
    Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336(6078):237–240.  https://doi.org/10.1126/science.1215691CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223.  https://doi.org/10.1016/j.yexmp.2008.12.004CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134(3):1376–1391.  https://doi.org/10.1021/ja209351uCrossRefPubMedGoogle Scholar
  6. 6.
    Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin CA (2014) Liposomal spherical nucleic acids. J Am Chem Soc 136(28):9866–9869.  https://doi.org/10.1021/ja504845fCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA (2009) Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol Pharm 6(6):1934–1940.  https://doi.org/10.1021/mp900172mCrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zheng D, Giljohann DA, Chen DL, Massich MD, Wang XQ, Iordanov H, Mirkin CA, Paller AS (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A 109(30):11975–11980.  https://doi.org/10.1073/pnas.1118425109CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5(209):209ra152.  https://doi.org/10.1126/scitranslmed.3006839CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sita TL, Kouri FM, Hurley LA, Merkel TJ, Chalastanis A, May JL, Ghelfi ST, Cole LE, Cayton TC, Barnaby SN, Sprangers AJ, Savalia N, James CD, Lee A, Mirkin CA, Stegh AH (2017) Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proc Natl Acad Sci U S A 114(16):4129–4134.  https://doi.org/10.1073/pnas.1702736114CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH (2015) miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 29(7):732–745.  https://doi.org/10.1101/gad.257394.114CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mastarone DJ, Harrison VS, Eckermann AL, Parigi G, Luchinat C, Meade TJ (2011) A modular system for the synthesis of multiplexed magnetic resonance probes. J Am Chem Soc 133(14):5329–5337.  https://doi.org/10.1021/ja1099616CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ken and Ruth Davee Department of Neurology, The Robert H. Lurie Comprehensive Cancer Center, The Northwestern Brain Tumor InstituteNorthwestern UniversityChicagoUSA
  2. 2.International Institute for NanotechnologyNorthwestern UniversityEvanstonUSA
  3. 3.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations