Design of Eco-Friendly Gold Nanoparticles for Cancer Treatment

  • Deep Pooja
  • Ramakrishna Sistla
Part of the Methods in Molecular Biology book series (MIMB, volume 1974)


Gold nanoparticles (GNPs) have emerged as a potential scaffold for a wide range of biomedical applications such as biosensing, drug delivery, and imaging. However, the toxicity of nanoparticles remains a challenge for using them in biological system. The morphology and surface chemistry of GNP can be manipulated by their method of preparation. GNP can be synthesized and functionalized by various methods. This chapter illustrates the synthesis of highly biocompatible GNP using a natural gum, i.e., xanthan gum (XG). Moreover, due to the presence of mannose moiety in XG, these XG-stabilized GNP may also act as self-targeted drug carriers for the delivery of chemotherapeutic agents/siRNA/shRNA to mannose receptor overexpressing cancer cells.


Xanthan gum Gold nanoparticles Biocompatibility Chemotherapy Drug delivery 



The work described in this book chapter has been published as Deep Pooja et al., Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydrate Polymers 2014;110:1–9. The work is reused after permission from Elsevier under license number 4236430677285.


  1. 1.
    Almeida JP, Figueroa ER, Drezek RA (2014) Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3):503–514CrossRefPubMedGoogle Scholar
  2. 2.
    Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149(1):65–71CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Oliveira R, Zhao P, Li N et al (2013) Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Adv Colloid Interf Sci 199(200):44–58Google Scholar
  4. 4.
    Chen YH, Tsai CY, Huang PY et al (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722CrossRefPubMedGoogle Scholar
  5. 5.
    Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129(37):11653–11661CrossRefPubMedGoogle Scholar
  6. 6.
    Aryal S, Grailer JJ, Pilla S et al (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19:7879–7884CrossRefGoogle Scholar
  7. 7.
    Prabaharan M, Grailer JJ, Pilla S et al (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075CrossRefPubMedGoogle Scholar
  8. 8.
    Burygin GL, Khlebtsov BN, Shantrokha AN et al (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4(8):794–801CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 148:122–127CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jung J, Park S, Hong S et al (2014) Synthesis of gold nanoparticles with glycosides: synthetic trends based on the structures of glycones and aglycones. Carbohydr Res 386:57–61CrossRefPubMedGoogle Scholar
  11. 11.
    Khan MS, Vishakantea D, Siddaramaiah H (2013) Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interf Sci 199–200:44–58CrossRefGoogle Scholar
  12. 12.
    Saha B, Bhattacharya J, Mukherjee A et al (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2(12):614–622CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mirza AZ, Shamshad H (2011) Preparation and characterization of doxorubicin functionalized gold nanoparticles. Eur J Med Chem 46(5):1857–1860CrossRefPubMedGoogle Scholar
  14. 14.
    Rouhana LL, Jaber JA, Schlenoff JB (2007) Aggregation-resistant water-soluble gold nanoparticles. Langmuir 23:12799–12801CrossRefPubMedGoogle Scholar
  15. 15.
    Dhar S, Reddy EM, Shiras A et al (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14(33):10244–10250CrossRefPubMedGoogle Scholar
  16. 16.
    Tiraferri A, Chen KL, Sethi R et al (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324(1–2):71–79CrossRefPubMedGoogle Scholar
  17. 17.
    Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726CrossRefPubMedGoogle Scholar
  18. 18.
    Xue D, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res 14:1239–1253CrossRefGoogle Scholar
  19. 19.
    Jian H, Zhu L, Zhang W et al (2012) Galactomannan (from Gleditsia sinensis Lam.) and xanthan gum matrix tablets for controlled delivery of theophylline: in vitro drug release and swelling behaviour. Carbohydr Polym 87:2176–2182CrossRefGoogle Scholar
  20. 20.
    Sereno NM, Hill SE, Mitchell JR (2007) Impact of the extrusion process on xanthan gum behaviour. Carbohydr Res 342(10):1333–1342CrossRefPubMedGoogle Scholar
  21. 21.
    Sharma BR, Naresh L, Dhuldhoya NC et al (2006) Xanthan gum—a boon to food industry. Food promotion chronicle 1(5):27–30Google Scholar
  22. 22.
    Phaechamud T, Ritthidej GC (2007) Sustained-release from layered matrix system comprising chitosan and xanthan gum. Drug Dev Ind Pharm 33:595–605CrossRefPubMedGoogle Scholar
  23. 23.
    Santos H, Veiga F, Pina ME et al (2005) Compaction compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. Int J Pharm 295(1–2):15–27CrossRefPubMedGoogle Scholar
  24. 24.
    Sinha VR, Mittal BR, Bhutani KK et al (2004) Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int J Pharm 269(1):101–108CrossRefPubMedGoogle Scholar
  25. 25.
    Desplanques S, Renou F, Grisel M et al (2012) Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll 27:401–410CrossRefGoogle Scholar
  26. 26.
    Fan G, Cang L, Qin W et al (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72CrossRefGoogle Scholar
  27. 27.
    Comba S, Dalmazzo D, Santagata E et al (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2–3):598–605CrossRefPubMedGoogle Scholar
  28. 28.
    Vecchia ED, Luna M, Sethi R (2009) Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43(23):8942–8947CrossRefPubMedGoogle Scholar
  29. 29.
    Carvalho C, Santos RX, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285CrossRefPubMedGoogle Scholar
  30. 30.
    Laginha KM, Verwoert S, Charrois GJR et al (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 11:6944–6949CrossRefPubMedGoogle Scholar
  31. 31.
    Gu YJ, Cheng J, Man CW et al (2012) Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine 8(2):204–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deep Pooja
    • 1
  • Ramakrishna Sistla
    • 1
  1. 1.Pharmacology and Toxicology DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations