Synthesis of Base-Modified dNTPs Through Cross-Coupling Reactions and Their Polymerase Incorporation to DNA

  • Petra Ménová
  • Hana Cahová
  • Milan Vrábel
  • Michal HocekEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1973)


Synthesis of base-modified dNTPs through the Suzuki or Sonogashira cross-coupling reactions of halogenated dNTPs with boronic acids or alkynes is reported, as well as the use of these modified dNTPs in polymerase incorporations to oligonucleotides or DNA by primer extension or PCR.

Key words

Nucleotides Nucleoside triphosphates DNA polymerases Enzymatic synthesis Modified DNA 



This work was supported by the Academy of Sciences of the Czech Republic (Praemium Academiae), by the Czech Science Foundation (18-03305S), and by the European Regional Development Fund; OP RDE (No. CZ.02.1.01/0.0/0.0/16_019/0000729).


  1. 1.
    Hocek M, Fojta M (2008) Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Org Biomol Chem 6:2233–2241CrossRefGoogle Scholar
  2. 2.
    Jager S, Rasched G, Kornreich-Leshem H, Engeser M, Thum O, Famulok M (2005) A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc 127:15071–15082CrossRefGoogle Scholar
  3. 3.
    Kielkowski P, Fanfrlík J, Hocek M (2014) 7-Aryl-7-deazaadenine 2′-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew Chem Int Ed Engl 53:7552–7555CrossRefGoogle Scholar
  4. 4.
    Cahová H, Panattoni A, Kielkowski P, Fanfrlík J, Hocek M (2016) 5-substituted pyrimidine and 7-substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem Biol 11:3165–3171CrossRefGoogle Scholar
  5. 5.
    Brázdilová P, Vrábel M, Pohl R, Pivoňková H, Havran L, Hocek M, Fojta M (2007) Ferrocenylethynyl derivatives of nucleoside triphosphates: synthesis, incorporation, electrochemistry, and bioanalytical applications. Chem Eur J 13:9527–9533CrossRefGoogle Scholar
  6. 6.
    Cahová H, Havran L, Brázdilová P, Pivoňková H, Pohl R, Fojta M, Hocek M (2008) Aminophenyl- and nitrophenyl-labeled nucleoside triphosphates: synthesis, enzymatic incorporation, and electrochemical detection. Angew Chem Int Ed 47:2059–2062CrossRefGoogle Scholar
  7. 7.
    Vrábel M, Horáková P, Pivoňková H, Kalachová L, Černocká H, Cahová H, Pohl R, Šebest P, Havran L, Hocek M, Fojta M (2009) Base-modified DNA labeled by [Ru (bpy)3] 2+ and [Os(bpy)3] 2+ complexes: construction by polymerase incorporation of modified nucleoside triphosphates, electrochemical and luminescent properties, and applications. Chem Eur J 15:1144–1154CrossRefGoogle Scholar
  8. 8.
    Balintová J, Pohl R, Horáková P, Vidláková P, Havran L, Fojta M, Hocek M (2011) Anthraquinone as a redox label for DNA. Synthesis, enzymatic incorporation and electrochemistry of anthraquinone-modified of nucleosides, nucleotides and DNA. Chem Eur J 17:14063–14073CrossRefGoogle Scholar
  9. 9.
    Macíčková-Cahová H, Hocek M (2009) Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases. Nucleic Acids Res 37:7612–7622CrossRefGoogle Scholar
  10. 10.
    Macíčková-Cahová H, Pohl R, Hocek M (2011) Cleavage of functionalized DNA containing 5-modified pyrimidines by type II restriction endonucleases. Chembiochem 12:431–438CrossRefGoogle Scholar
  11. 11.
    Kielkowski P, Macíčková-Cahová H, Pohl R, Hocek M (2011) Transient and switchable (triethylsilyl)ethynyl protection of DNA against cleavage by restriction endonucleases. Angew Chem Int Ed 50:8727–8730CrossRefGoogle Scholar
  12. 12.
    Raindlová V, Pohl R, Šanda M, Hocek M (2010) Direct polymerase synthesis of reactive aldehyde-functionalized DNA and its conjugation and staining with hydrazines. Angew Chem Int Ed 49:1064–1066CrossRefGoogle Scholar
  13. 13.
    Kovács T, Ötvös L (1988) Simple synthesis of 5-vinyl- and5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett 29:4525–4528CrossRefGoogle Scholar
  14. 14.
    Čapek P, Cahová H, Pohl R, Hocek M, Gloeckner C, Marx A (2007) An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chem Eur J 13:6196–6203CrossRefGoogle Scholar
  15. 15.
    Yu CJ, Yowanto H, Wan YJ, Meade TJ, Chong Y, Strong M, Donilon LH, Kayyem JF, Gozin M, Blackburn GF (2000) Uridine-conjugated ferrocene DNA oligonucleotides: unexpected cyclization reaction of the uridine base. J Am Chem Soc 122:6767–6768CrossRefGoogle Scholar
  16. 16.
    Macíčková-Cahová H, Vrábel M, Hocek M (2010) Cross-coupling modification of nucleoside triphosphates, PEX, and PCR construction of base-modified DNA. Curr Protoc Chem Biol 2:1–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Petra Ménová
    • 1
  • Hana Cahová
    • 1
  • Milan Vrábel
    • 1
  • Michal Hocek
    • 1
    Email author
  1. 1.Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic

Personalised recommendations