Advertisement

Leishmania pp 141-167 | Cite as

Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania

  • Jade-Eva Potvin
  • Philippe Leprohon
  • Elodie Gazanion
  • Mansi Sharma
  • Christopher Fernandez-Prada
  • Marc OuelletteEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1971)

Abstract

Leishmania is still a major cause of mortality and morbidity worldwide. Few efficient drugs are available, and resistance threatens actual treatments. In order to improve knowledge about the mode of action of current drugs and those in development, as well as to understand the mechanisms pertaining to their resistance, we recently described a sensitive and high-throughput method termed Cos-Seq. Here we provide a detailed protocol for every step of the procedure, from library construction to drug selection, cosmid extraction, and next-generation sequencing of extracted cosmids. A section on the bioinformatics of Cos-Seq is also included. Cos-Seq facilitates the identification of gain-of-function resistance mechanisms and drug targets and is a useful tool in resistance and drug development studies.

Key words

Leishmania Next-generation sequencing Cos-Seq Drug resistance Mode of action 

References

  1. 1.
    Ryan KA, Garraway LA, Descoteaux A et al (1993) Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A 90(18):8609–8613CrossRefGoogle Scholar
  2. 2.
    Kundig C, Haimeur A, Legare D et al (1999) Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO J 18(9):2342–2351.  https://doi.org/10.1093/emboj/18.9.2342CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coelho AC, Beverley SM, Cotrim PC (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol 130(2):83–90CrossRefGoogle Scholar
  4. 4.
    Cotrim PC, Garrity LK, Beverley SM (1999) Isolation of genes mediating resistance to inhibitors of nucleoside and ergosterol metabolism in Leishmania by overexpression/selection. J Biol Chem 274(53):37723–37730CrossRefGoogle Scholar
  5. 5.
    Kotze AC, Hunt PW, Skuce P et al (2014) Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist 4(3):164–184.  https://doi.org/10.1016/j.ijpddr.2014.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Horn D, Duraisingh MT (2014) Antiparasitic chemotherapy: from genomes to mechanisms. Annu Rev Pharmacol Toxicol 54:71–94.  https://doi.org/10.1146/annurev-pharmtox-011613-135915CrossRefPubMedGoogle Scholar
  7. 7.
    Downing T, Imamura H, Decuypere S et al (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21(12):2143–2156.  https://doi.org/10.1101/gr.123430.111CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coelho AC, Boisvert S, Mukherjee A et al (2012) Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl Trop Dis 6(2):e1512.  https://doi.org/10.1371/journal.pntd.0001512CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Leprohon P, Fernandez-Prada C, Gazanion E et al (2015) Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist 5(1):26–35.  https://doi.org/10.1016/j.ijpddr.2014.09.005CrossRefPubMedGoogle Scholar
  10. 10.
    Gazanion E, Fernandez-Prada C, Papadopoulou B et al (2016) Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 113(21):E3012–E3021.  https://doi.org/10.1073/pnas.1520693113CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albert Descoteaux LAG, Ryan KA, Garrity LK, Tuco SJ, Beverly SM (1994) Identification of Genes by Functional Complementation in Protozoan Parasite Leihsmania. Methods Mol Biol 3:23Google Scholar
  12. 12.
    Fernandez-Prada C, Sharma M, Plourde M et al (2018) High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. Int J Parasitol Drugs Drug Resist 8(2):165–173.  https://doi.org/10.1016/j.ijpddr.2018.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512.  https://doi.org/10.1038/nprot.2013.084CrossRefPubMedGoogle Scholar
  14. 14.
    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.  https://doi.org/10.1186/1471-2105-12-323CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang C, Zhang B, Lin LL et al (2017) Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics 18(1):583.  https://doi.org/10.1186/s12864-017-4002-1CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zakeri M, Srivastava A, Almodaresi F et al (2017) Improved data-driven likelihood factorizations for transcript abundance estimation. Bioinformatics 33(14):i142–i151.  https://doi.org/10.1093/bioinformatics/btx262CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Patro R, Duggal G, Love MI et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14(4):417–419.  https://doi.org/10.1038/nmeth.4197CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527.  https://doi.org/10.1038/nbt.3519CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550.  https://doi.org/10.1186/s13059-014-0550-8CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Law CW, Chen Y, Shi W et al (2014) voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29.  https://doi.org/10.1186/gb-2014-15-2-r29CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    White TC, Fase-Fowler F, van Luenen H et al (1988) The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. J Biol Chem 263(32):16977–16983PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jade-Eva Potvin
    • 1
  • Philippe Leprohon
    • 1
  • Elodie Gazanion
    • 2
  • Mansi Sharma
    • 1
  • Christopher Fernandez-Prada
    • 3
  • Marc Ouellette
    • 1
    Email author
  1. 1.Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de Recherche en Infectiologie du Centre de Recherche du CHU de QuébecUniversité LavalQuébecCanada
  2. 2.Université de Montpellier, IRD, CNRS, MIVEGECMontpellierFrance
  3. 3.Département de Pathologie et Microbiologie, Faculté de Médecine VétérinaireUniversité de MontréalSaint-HyacintheCanada

Personalised recommendations