Advertisement

Host-Free Systems for Differentiation of Axenic Leishmania

  • Dan ZilbersteinEmail author
  • Roni Nitzan Koren
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1971)

Abstract

This chapter describes, in detail, the method our laboratory developed to differentiate L. donovani promastigotes into amastigotes in a host-free culture. This method is based on previous observations that Leishmania promastigotes can combine two environmental signals, typical to lysosomes, acidic pH (~5.5) and body temperature (37 °C), into a signal that induces differentiation. Based on this concept, we have modified medium 199 to make it into an amastigote-specific medium. Shifting promastigotes to this medium, followed by incubation in a CO2 incubator, induced differentiation. Axenic amastigotes reach maturation within 5 days, resembling the time it takes in vivo. This chapter provides a complete protocol that should be useful for both Old and New World species of Leishmania.

Key words

Development Phagolysosome Differentiation Signaling Promastigote Amastigote 

References

  1. 1.
    Zilberstein D (2018) Nutrient transport and sensing as pharmacological targets for leishmaniasis. In: Rivas L, Carmen G (eds) Drug discovery for leishmaniasis, Drug discovery, vol 60. The Royal Society of Chemistry, Cambridge, UK, pp 282–296Google Scholar
  2. 2.
    Harms E, Gochman N, Schneider JA (1981) Lysosomal pool of free-amino acids. Biochem Biophys Res Commun 99(3):830–836CrossRefGoogle Scholar
  3. 3.
    Burchmore RJ, Barrett MP (2001) Life in vacuoles--nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31(12):1311–1320CrossRefGoogle Scholar
  4. 4.
    Zilberstein D, Shapira M (1994) The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48:449–470.  https://doi.org/10.1146/annurev.mi.48.100194.002313CrossRefPubMedGoogle Scholar
  5. 5.
    Zilberstein D, Blumenfeld N, Liveanu V, Gepstein A, Jaffe CL (1991) Growth at acidic pH induces an amastigote stage-specific protein in Leishmania promastigotes. Mol Biochem Parasitol 45(1):175–178. doi:0166-6851(91)90040-D [pii]CrossRefGoogle Scholar
  6. 6.
    Doyle PS, Engel JC, Pimenta PF, da Silva PP, Dwyer DM (1991) Leishmania donovani: long-term culture of axenic amastigotes at 37 degrees C. Exp Parasitol 73(3):326–334. https://doi.org/0014-4894(91)90104-5 [pii]
  7. 7.
    Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141(1):99–108CrossRefGoogle Scholar
  8. 8.
    Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J, Turco SJ, Zilberstein D (1998) Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Mol Biochem Parasitol 95(1):9–20CrossRefGoogle Scholar
  9. 9.
    Bates PA, Robertson CD, Tetley L, Coombs GH (1992) Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 105(Pt 2):193–202CrossRefGoogle Scholar
  10. 10.
    Debrabant A, Joshi MB, Pimenta PF, dwyer DM (2004) Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J Parasitol 34(2):205–217CrossRefGoogle Scholar
  11. 11.
    Goyard S, Segawa H, Gordon J, Showalter M, Duncan R, Turco SJ, Beverley SM (2003) An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans. Mol Biochem Parasitol 130(1):31–42CrossRefGoogle Scholar
  12. 12.
    Zilberstein D (2008) Physiological and biochemical aspects of Leishmania develpment. In: Myler PJ, Fasel N (eds) Leishmania after the genome: biology and control. Horizon Scientific Press and Caiser Academic Press, New York, pp 107–122Google Scholar
  13. 13.
    Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22(2):590–602.  https://doi.org/10.1096/fj.07-9254comCrossRefPubMedGoogle Scholar
  14. 14.
    Bachmaier S, Witztum R, Tsigankov P, Koren R, Boshart M, Zilberstein D (2016) Protein kinase a signaling during bidirectional axenic differentiation in Leishmania. Int J Parasitol 46(2):75–82.  https://doi.org/10.1016/j.ijpara.2015.09.003CrossRefPubMedGoogle Scholar
  15. 15.
    Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152(1):53–65.  https://doi.org/10.1016/j.molbiopara.2006.11.011. S0166-6851(06)00332-X [pii]CrossRefGoogle Scholar
  16. 16.
    Mengeling BJ, Zilberstein D, Turco SJ (1997) Biosynthesis of Leishmania lipophosphoglycan: solubilization and partial characterization of the initiating mannosylphosphoryltransferase. Glycobiology 7(6):847–853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of BiologyTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations