Advertisement

Construction and Analysis of miRNA Regulatory Networks

  • Antonella Mensi
  • Vincenzo Bonnici
  • Simone Caligola
  • Rosalba GiugnoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)

Abstract

This chapter is devoted to illustrate the usage of state-of-the-art methodologies for miRNA regulatory network construction and analysis. Advantages in understanding the role of miRNAs in regulating gene expression are increasing the possibility of developing targeted therapies and drugs. This new possibility can be exploited by gaining new knowledge through analyzing interactions between a specific miRNA and a targeted gene.

Key words

miRNA networks miRNA targets Enrichment analysis Expression data Network analysis 

References

  1. 1.
    Flynt AS et al (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842. https://doi.org/10.1038/nrg2455nnCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gurtan AM et al (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425(19):3582–3600. https://doi.org/10.1016/j.jmb.2013.03.007CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319(5871):1785–1786. https://doi.org/10.1126/science.1151651CrossRefPubMedGoogle Scholar
  4. 4.
    Baglioni M, Russo F, Geraci F, Rizzo M, Rainaldi G, Pellegrini M (2015) A new method for discovering disease-specific MiRNA-target regulatory networks. PLoS One 10(4). https://doi.org/10.1371/journal.pone.0122473CrossRefGoogle Scholar
  5. 5.
    Russo F, Belling K, Jensen AB, Scoyni F, Brunak S, Pellegrini M (2017) MicroRNAs, regulatory networks, and comorbidities: decoding complex systems. In: Dalmay T (ed) MicroRNA detection and target identification, Methods in molecular biology, vol 1580. Humana Press, New York, NY, pp 281–295CrossRefGoogle Scholar
  6. 6.
    R Core Team (2017) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  7. 7.
    Cava C, Colaprico A, Bertoli G et al (2017) SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data. Int J Mol Sci 18(2):274. https://doi.org/10.3390/ijms18020274CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Pajak M, Simpson TI (2016) miRNAtap: miRNAtap: microRNA targets–aggregated predictions. R package version 112.0Google Scholar
  9. 9.
    Bonnici V et al (2018) http://arenaidb.ba.itb.cnr.it. Accessed 30 Apr 2018
  10. 10.
    Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44(Web Server issue):W135–W141. https://doi.org/10.1093/nar/gkw288CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C (2012) MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits. Nucleic Acids Res 40(Web Server issue):W13–W21. https://doi.org/10.1093/nar/gks460nCrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huber W, Carey VJ, Gentleman R et al (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12(2):115–121. https://doi.org/10.1038/nmeth.3252CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/Google Scholar
  14. 14.
    Alexa A, Rahnenfuhrer J (2016) topGO: enrichment analysis for gene ontology. R package version 2.30.1Google Scholar
  15. 15.
    Colaprico A, Silva TC, Olsen C et al (2016) TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44(8):e71. https://doi.org/10.1093/nar/gkv1507CrossRefPubMedGoogle Scholar
  16. 16.
    Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N (2014) Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform 15(4):648–659. https://doi.org/10.1093/bib/bbs082CrossRefPubMedGoogle Scholar
  17. 17.
    Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220. https://doi.org/10.1093/nar/gkq537CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17–92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506. https://doi.org/10.1007/s10522-010-9272-9CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26(21):8191–8201. https://doi.org/10.1128/MCB.00242-06CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005. https://doi.org/10.7554/eLifhbe.05005CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 46(Database issue):D239–D245. https://doi.org/10.1093/nar/gkx1141CrossRefPubMedGoogle Scholar
  22. 22.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA Targets. PLoS Biol 2(11):e363. https://doi.org/10.1371/journal.pbio.0020363CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. https://doi.org/10.1038/ng1536CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(D1):D146–D152. https://doi.org/10.1093/nar/gku1104CrossRefPubMedGoogle Scholar
  25. 25.
    Carlson M (2017) org.Hs.eg.db: Genome wide annotation for Human. R package version 3.5.0Google Scholar
  26. 26.
    Ashburner M, Ball CA, The Gene Ontology Consortium et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    The Gene Ontology Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res 245(Database issue):D331–D338. https://doi.org/10.1093/nar/gkw1108CrossRefGoogle Scholar
  28. 28.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616CrossRefPubMedGoogle Scholar
  29. 29.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(Database issue):D353–D361. https://doi.org/10.1093/nar/gkw1092CrossRefPubMedGoogle Scholar
  30. 30.
    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(Database issue):D457–D462. https://doi.org/10.1093/nar/gkv1070CrossRefPubMedGoogle Scholar
  31. 31.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefGoogle Scholar
  32. 32.
    Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38(Web Server issue):W352–W359. https://doi.org/10.1093/nar/gkq423CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284. https://doi.org/10.1038/ng2135CrossRefGoogle Scholar
  34. 34.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211CrossRefGoogle Scholar
  35. 35.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923CrossRefGoogle Scholar
  36. 36.
    Pajak M and Simpson TI (2016) miRNAtap.db: Data for miRNAtap. R package version 0.99.10Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Antonella Mensi
    • 1
  • Vincenzo Bonnici
    • 1
  • Simone Caligola
    • 1
  • Rosalba Giugno
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations