Combing the Hairball: Improving Visualization of miRNA–Target Interaction Networks

  • Francesco RussoEmail author
  • Jessica Xin Hu
  • Jose Alejandro Romero Herrera
  • Søren Brunak
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)


The visualization of regulatory networks is becoming increasingly important in order to understand molecular mechanisms and diseases. MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) responsible of the post-transcriptional regulation of messenger RNAs (mRNAs) and other ncRNAs. MiRNAs are involved in numerous biological processes including development, cell proliferation, and apoptosis. They are also key molecules in major complex diseases such as cancer and cardiovascular diseases. A single miRNA can regulate many targets, making the analysis and visualization of these complex networks challenging. Here, we present standard and advanced visualization approaches to represent networks with a special focus on miRNA–target interactions.

Key words

MicroRNAs Noncoding RNAs Visualization Regulatory networks Target prediction 



The authors would like to acknowledge funding from the Novo Nordisk Foundation (grant agreement NNF14CC0001).


  1. 1.
    Li T et al (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14:61–64. Scholar
  2. 2.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. Scholar
  3. 3.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefGoogle Scholar
  4. 4.
    Russo F et al (2018) miRandola 2017: a curated knowledge base of non-invasive biomarkers. Nucleic Acids Res 46:D354–D359. Scholar
  5. 5.
    Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998. Scholar
  6. 6.
    Krzywinski M, Birol I, Jones SJ, Marra MA (2012) Hive plots--rational approach to visualizing networks. Brief Bioinform 13:627–644. Scholar
  7. 7.
    Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. Scholar
  8. 8.
    Krzywinski M et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. Scholar
  9. 9.
    Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. Scholar
  10. 10.
    Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S (2013) Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 41:2817–2831. Scholar
  11. 11.
    Gama-Castro S et al (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor units). Nucleic Acids Res 39:D98–D105. Scholar
  12. 12.
    Hu JX, Thomas CE, Brunak S (2016) Network biology concepts in complex disease comorbidities. Nat Rev Genet 17:615–629. Scholar
  13. 13.
    Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312. Scholar
  14. 14.
    Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565. Scholar
  15. 15.
    de Lichtenberg U, Jensen LJ, Brunak S, Bork P (2005) Dynamic complex formation during the yeast cell cycle. Science 307:724–727. Scholar
  16. 16.
    Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. Scholar
  17. 17.
    Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17. Scholar
  18. 18.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4.
  19. 19.
    Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38:W352–W359. Scholar
  20. 20.
    Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C (2012) MAGIA(2): from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res 40:W13–W21. Scholar
  21. 21.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. Scholar
  22. 22.
    Huang d W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Francesco Russo
    • 1
    Email author
  • Jessica Xin Hu
    • 1
  • Jose Alejandro Romero Herrera
    • 1
  • Søren Brunak
    • 1
  1. 1.Novo Nordisk Foundation Center for Protein Research, Translational Disease Systems Biology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations