Advertisement

Computational Methods to Investigate the Impact of miRNAs on Pathways

  • Salvatore Alaimo
  • Giovanni Micale
  • Alessandro La Ferlita
  • Alfredo Ferro
  • Alfredo PulvirentiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1970)

Abstract

Pathway analysis is a wide class of methods allowing to determine the alteration of functional processes in complex diseases. However, biological pathways are still partial, and knowledge coming from posttranscriptional regulators has started to be considered in a systematic way only recently. Here we will give a global and updated view of the main pathway and subpathway analysis methodologies, focusing on the improvements obtained through the recent introduction of microRNAs as regulatory elements in these frameworks.

Key words

Computational pathway analysis Subpathways mining MicroRNAs Precision medicine Next-generation sequencing High-throughput sequencing 

Notes

Acknowledgments

This work has been done within the research project “Marcatori molecolari e clinico-strumentali precoci, nelle patologie metaboliche e cronico-degenerative,” funded by the Department of Clinical and Experimental of University of Catania.

References

  1. 1.
    Aronson SJ, Rehm HL (2015) Building the foundation for genomics in precision medicine. Nature 526:336–342. https://doi.org/10.1038/nature15816CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lovat F, Fassan M, Gasparini P et al (2015) miR-15b/16-2 deletion promotes B-cell malignancies. Proc Natl Acad Sci U S A 112:11636–11641. https://doi.org/10.1073/pnas.1514954112CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Balatti V, Pekarky Y, Rizzotto L, Croce CM (2013) miR deregulation in CLL. Adv Exp Med Biol 792:309–325. https://doi.org/10.1007/978-1-4614-8051-8_14CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Balatti V, Nigita G, Veneziano D et al (2017) tsRNA signatures in cancer. Proc Natl Acad Sci U S A 114:8071–8076. https://doi.org/10.1073/pnas.1706908114CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Balatti V, Pekarsky Y, Croce CM (2017) Role of the tRNA-derived small RNAs in cancer: new potential biomarkers and target for therapy. Adv Cancer Res 135:173–187. https://doi.org/10.1016/bs.acr.2017.06.007CrossRefPubMedGoogle Scholar
  6. 6.
    Sethi S, Ali S, Sethi S, Sarkar FH (2014) MicroRNAs in personalized cancer therapy. Clin Genet 86:68–73. https://doi.org/10.1111/cge.12362CrossRefPubMedGoogle Scholar
  7. 7.
    Saumet A, Mathelier A, Lecellier C-H (2014) The potential of microRNAs in personalized medicine against cancers. Biomed Res Int 2014:642916. https://doi.org/10.1155/2014/642916CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Glazko GV, Emmert-Streib F (2009) Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics 25:2348–2354. https://doi.org/10.1093/bioinformatics/btp406CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alaimo S, Giugno R, Acunzo M et al (2016) Post-transcriptional knowledge in pathway analysis increases the accuracy of phenotypes classification. Oncotarget 7:54572–54582. https://doi.org/10.18632/oncotarget.9788CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jin L, Zuo X-Y, Su W-Y et al (2014) Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics 12:210–220. https://doi.org/10.1016/j.gpb.2014.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kanehisa M (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432. https://doi.org/10.1093/nar/gki072CrossRefPubMedGoogle Scholar
  13. 13.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vlachos IS, Zagganas K, Paraskevopoulou MD et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466. https://doi.org/10.1093/nar/gkv403CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Khatri P, Draghici S, Ostermeier GC, Krawetz SA (2002) Profiling gene expression using Onto-Express. Genomics 79:266–270. https://doi.org/10.1006/geno.2002.6698CrossRefPubMedGoogle Scholar
  16. 16.
    Drǎghici S, Khatri P, Martins RP et al (2003) Global functional profiling of gene expression. Genomics 81:98–104. https://doi.org/10.1016/S0888-7543(02)00021-6CrossRefPubMedGoogle Scholar
  17. 17.
    Berriz GF, King OD, Bryant B et al (2003) Characterizing gene sets with FuncAssociate. Bioinformatics 19:2502–2504. https://doi.org/10.1093/bioinformatics/btg363CrossRefPubMedGoogle Scholar
  18. 18.
    Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20:1464–1465. https://doi.org/10.1093/bioinformatics/bth088CrossRefPubMedGoogle Scholar
  19. 19.
    Castillo-Davis CI, Hartl DL (2003) GeneMerge–post-genomic analysis, data mining, and hypothesis testing. Bioinformatics 19:891–892. https://doi.org/10.1093/bioinformatics/btg114CrossRefPubMedGoogle Scholar
  20. 20.
    Martin D, Brun C, Remy E et al (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5:R101. https://doi.org/10.1186/gb-2004-5-12-r101CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Doniger SW, Salomonis N, Dahlquist KD et al (2003) MAPPFinder: using gene ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4:R7. https://doi.org/10.1186/gb-2003-4-1-r7CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Efron B, Tibshirani R (2007) On testing the significance of sets of genes. Ann Appl Stat 1:107–129. https://doi.org/10.1214/07-aoas101CrossRefGoogle Scholar
  23. 23.
    Hummel M, Meister R, Mansmann U (2008) GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24:78–85. https://doi.org/10.1093/bioinformatics/btm531CrossRefPubMedGoogle Scholar
  24. 24.
    Rahnenführer J, Domingues FS, Maydt J, Lengauer T (2004) Calculating the statistical significance of changes in pathway activity from gene expression data. Stat Appl Genet Mol Biol 3:Article16. https://doi.org/10.2202/1544-6115.1055CrossRefPubMedGoogle Scholar
  25. 25.
    Draghici S, Khatri P, Tarca AL et al (2007) A systems biology approach for pathway level analysis. Genome Res 17:1537–1545. https://doi.org/10.1101/gr.6202607CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tarca AL, Draghici S, Khatri P et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82. https://doi.org/10.1093/bioinformatics/btn577CrossRefPubMedGoogle Scholar
  27. 27.
    Shojaie A, Michailidis G (2009) Analysis of gene sets based on the underlying regulatory network. J Comput Biol 16:407–426. https://doi.org/10.1089/cmb.2008.0081CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vaske CJ, Benz SC, Sanborn JZ et al (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26:i237–i245. https://doi.org/10.1093/bioinformatics/btq182CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sedgewick AJ, Benz SC, Rabizadeh S et al (2013) Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM. Bioinformatics 29:i62–i70. https://doi.org/10.1093/bioinformatics/btt229CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ansari S, Voichita C, Donato M et al (2016) A novel pathway analysis approach based on the unexplained disregulation of genes. Proc IEEE 1–14. doi: https://doi.org/10.1109/jproc.2016.2531000
  31. 31.
    Calura E, Martini P, Sales G et al (2014) Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles. Nucleic Acids Res 42:e96. https://doi.org/10.1093/nar/gku354CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kong SW, Pu WT, Park PJ (2006) A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics 22:2373–2380. https://doi.org/10.1093/bioinformatics/btl401CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tian L, Greenberg SA, Kong SW et al (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 102:13544–13549. https://doi.org/10.1073/pnas.0506577102CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang Z, Gentleman R (2007) Extensions to gene set enrichment. Bioinformatics 23:306–313. https://doi.org/10.1093/bioinformatics/btl599CrossRefPubMedGoogle Scholar
  35. 35.
    Lu Y, Liu P-Y, Xiao P, Deng H-W (2005) Hotelling’s T2 multivariate profiling for detecting differential expression in microarrays. Bioinformatics 21:3105–3113. https://doi.org/10.1093/bioinformatics/bti496CrossRefPubMedGoogle Scholar
  36. 36.
    Xiong H (2006) Non-linear tests for identifying differentially expressed genes or genetic networks. Bioinformatics 22:919–923. https://doi.org/10.1093/bioinformatics/btl034CrossRefPubMedGoogle Scholar
  37. 37.
    Mitrea C, Taghavi Z, Bokanizad B et al (2013) Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 4:278. https://doi.org/10.3389/fphys.2013.00278CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hsu S-D, Lin F-M, Wu W-Y et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169. https://doi.org/10.1093/nar/gkq1107CrossRefPubMedGoogle Scholar
  39. 39.
    Xiao F, Zuo Z, Cai G et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110. https://doi.org/10.1093/nar/gkn851CrossRefPubMedGoogle Scholar
  40. 40.
    Li C, Han J, Yao Q et al (2013) Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways. Nucleic Acids Res 41:e101. https://doi.org/10.1093/nar/gkt161CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 41:1425–1437. https://doi.org/10.1093/nar/gks1299CrossRefPubMedGoogle Scholar
  42. 42.
    Martini P, Sales G, Massa MS et al (2013) Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res 41:e19. https://doi.org/10.1093/nar/gks866CrossRefPubMedGoogle Scholar
  43. 43.
    Nam S, Chang HR, Kim K-T et al (2014) PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene 33:4941–4951. https://doi.org/10.1038/onc.2014.80CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vrahatis AG, Balomenos P, Tsakalidis AK, Bezerianos A (2016) DEsubs: an R package for flexible identification of differentially expressed subpathways using RNA-seq experiments. Bioinformatics 32:3844–3846. https://doi.org/10.1093/bioinformatics/btw544CrossRefPubMedGoogle Scholar
  45. 45.
    Feng L, Xu Y, Zhang Y et al (2015) Subpathway-GMir: identifying miRNA-mediated metabolic subpathways by integrating condition-specific genes, microRNAs, and pathway topologies. Oncotarget 6:39151–39164. https://doi.org/10.18632/oncotarget.5341CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vrahatis AG, Dimitrakopoulou K, Balomenos P et al (2016) CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis. Bioinformatics 32:884–892. https://doi.org/10.1093/bioinformatics/btv673CrossRefPubMedGoogle Scholar
  47. 47.
    Alaimo S, Marceca GP, Ferro A, Pulvirenti A (2017) Detecting disease specific pathway substructures through an integrated systems biology approach. Noncoding RNA 3:E20. https://doi.org/10.3390/ncrna3020020CrossRefPubMedGoogle Scholar
  48. 48.
    Cormen TH (2009) Introduction to algorithms. MIT Press, CambridgeGoogle Scholar
  49. 49.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    McKusick VA (2000) OMIM(TM): online mendelian inheritance in man. Baltimore, Johns Hopkins UniversityGoogle Scholar
  51. 51.
    Campbell N (2004) Genetic association database. Nat Rev Genet 5:87–87. https://doi.org/10.1038/nrg1288CrossRefGoogle Scholar
  52. 52.
    Chou C-H, Shrestha S, Yang C-D et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302. https://doi.org/10.1093/nar/gkx1067CrossRefPubMedGoogle Scholar
  53. 53.
    Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. https://doi.org/10.1038/nrm2868CrossRefPubMedGoogle Scholar
  54. 54.
    Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. https://doi.org/10.1093/nar/gkn714CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vergoulis T, Vlachos IS, Alexiou P et al (2011) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229. https://doi.org/10.1093/nar/gkr1161CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Poole W, Gibbs DL, Shmulevich I et al (2015) Combining dependent P-values with an empirical adaptation of Brown’s method. Bioinformatics 32(17):i430–i436CrossRefGoogle Scholar
  57. 57.
    Brown MB (1975) 400: a method for combining non-independent, one-sided tests of significance. Biometrics 31:987. https://doi.org/10.2307/2529826CrossRefGoogle Scholar
  58. 58.
    Friedman AA, Letai A, Fisher DE, Flaherty KT (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747–756. https://doi.org/10.1038/nrc4015CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fodor A, Karnieli E (2016) Challenges of implementing personalized (precision) medicine: a focus on diabetes. Per Med 13:485–497. https://doi.org/10.2217/pme-2016-0022CrossRefPubMedGoogle Scholar
  60. 60.
    Caskey T (2018) Precision medicine: functional advancements. Annu Rev Med 69:1–18. https://doi.org/10.1146/annurev-med-041316-090905CrossRefPubMedGoogle Scholar
  61. 61.
    Sager M, Yeat NC, Pajaro-Van der Stadt S et al (2015) Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization. Expert Rev Mol Diagn 15:1589–1603. https://doi.org/10.1586/14737159.2015.1105133CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang X, Marjani SL, Hu Z et al (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76:1305–1312. https://doi.org/10.1158/0008-5472.CAN-15-1907CrossRefPubMedGoogle Scholar
  63. 63.
    Melnekoff D, Lagana A, Hamou W et al (2017) Single-cell RNA sequencing reveals distinct transcriptomic profiles of multiple myeloma with implications for personalized medicine. Blood 130:62–62Google Scholar
  64. 64.
    Avci CB, Baran Y (2014) Use of microRNAs in personalized medicine. Methods Mol Biol 1107:311–325. https://doi.org/10.1007/978-1-62703-748-8_19CrossRefPubMedGoogle Scholar
  65. 65.
    Laganà A, Acunzo M, Romano G et al (2014) miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res 42:5416–5425. https://doi.org/10.1093/nar/gku202CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Salvatore Alaimo
    • 1
  • Giovanni Micale
    • 1
  • Alessandro La Ferlita
    • 2
  • Alfredo Ferro
    • 1
  • Alfredo Pulvirenti
    • 1
    Email author
  1. 1.Department of Clinical and Experimental MedicineUniversity of CataniaCataniaItaly
  2. 2.Department of Physics and AstronomyUniversity of CataniaCataniaItaly

Personalised recommendations