Genome Sequencing and Interrogation of Genome Databases: A Guide to Neisseria meningitidis Genomics

  • Holly B. Bratcher
  • Odile B. HarrisonEmail author
  • Martin C. J. Maiden
Part of the Methods in Molecular Biology book series (MIMB, volume 1969)


Whole genome sequencing (WGS) has revolutionized molecular microbiology, allowing the population biology of bacterial pathogens to be examined with greater accuracy and detail. The study of Neisseria meningitidis isolates, in particular, has benefitted from the availability of WGS data allowing outbreak cases, hyper-invasive lineages, molecular epidemiology, and vaccine coverage to be determined. Here, we describe a suite of protocols for the optimum recovery and analysis of WGS data, including a brief overview of methods for N. meningitidis DNA extraction, sequencing, and analysis. Downstream analysis tools are described including a step-by-step guide to the use of This freely accessible website provides a resource for the Neisseria community allowing the diversity of the meningococcal population to be extracted and exploited.

Key words

DNA extraction Next-generation sequencing De novo assembly PubMLST Strain designation GenomeComparator GrapeTree ClonalFrameML Artemis 


  1. 1.
    Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA, Bray JE et al (2017) Neisseria genomics: current status and future perspectives. Pathog Dis 75(6):ftx060CrossRefGoogle Scholar
  2. 2.
    Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102CrossRefGoogle Scholar
  3. 3.
    Lam HY, Clark MJ, Chen R, Natsoulis G, O'Huallachain M, Dewey FE et al (2012) Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 30(1):78–82CrossRefGoogle Scholar
  4. 4.
    van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426CrossRefGoogle Scholar
  5. 5.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829CrossRefGoogle Scholar
  6. 6.
    Zerbino D (2010) Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 11(5):1–12Google Scholar
  7. 7.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477CrossRefGoogle Scholar
  8. 8.
    Hill DMC, Lucidarme J, Gray SJ, Newbold LS, Ure R, Brehony C et al (2015) Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infect Dis 15(12):1420–1428CrossRefGoogle Scholar
  9. 9.
    Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MC (2014) A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 15:1138CrossRefGoogle Scholar
  10. 10.
    Earl D, Bradnam K, St John J, Darling A, Lin DW, Fass J et al (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 21(12):2224–2241CrossRefGoogle Scholar
  11. 11.
    Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11(1):595CrossRefGoogle Scholar
  12. 12.
    Brehony C, Rodrigues CM, Borrow R, Smith A, Cunney R, Moxon ER et al (2016) Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: implications for immunisation. Vaccine 34(39):4690–4697CrossRefGoogle Scholar
  13. 13.
    Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815CrossRefGoogle Scholar
  14. 14.
    Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J et al (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158(Pt 6):1570–1580CrossRefGoogle Scholar
  15. 15.
    Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony CM, Colles FM et al (2012) Ribosomal multi-locus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–1015CrossRefGoogle Scholar
  16. 16.
    Heydari M, Marashi SA, Tusserkani R, Sadeghi M (2014) Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals. Bio Systems 124:86–94CrossRefGoogle Scholar
  17. 17.
    Caugant DA, Maiden MC (2009) Meningococcal carriage and disease—population biology and evolution. Vaccine 27(Suppl 2):B64–B70CrossRefGoogle Scholar
  18. 18.
    Jolley KA, Brehony C, Maiden MC (2007) Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev 31(1):89–96CrossRefGoogle Scholar
  19. 19.
    Rodrigues CMC, Lucidarme J, Borrow R, Smith A, Cameron JC, Moxon ER et al (2018) Genomic surveillance of 4CMenB vaccine antigenic variants among disease-causing Neisseria meningitidis isolates, United Kingdom, 2010–2016. Emerg Infect Dis 24(4):673–682CrossRefGoogle Scholar
  20. 20.
    Parikh SR, Campbell H, Beebeejaun K, Ribeiro S, Gray SJ, Borrow R et al (2016) Meningococcal group W disease in infants and potential prevention by vaccination. Emerg Infect Dis 22(8):1505–1507CrossRefGoogle Scholar
  21. 21.
    Rodrigues C, Brehony C, Borrow R, Smith A, Cunney R, Moxon ER et al (2017) Genomic surveillance and meningococcal group B vaccine coverage estimates after introduction of the vaccine into the national immunisation programme in the UK. Lancet 389:85CrossRefGoogle Scholar
  22. 22.
    MRF-MGL. MRF Meningococcus Genome Library: Meningitis Research Foundation. Available from:
  23. 23.
    Jolley KA, Hill DM, Bratcher HB, Harrison OB, Feavers IM, Parkhill J et al (2012) Resolution of a meningococcal disease outbreak from whole genome sequence data with rapid web-based analysis methods. J Clin Microbiol 50(9):3046–3053CrossRefGoogle Scholar
  24. 24.
    Moulton V (2003) SplitsTree: a network-based tool for exploring evolutionary relationships in molecular data. In: Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge, pp 312–328Google Scholar
  25. 25.
    Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21(2):255–265CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP et al (2018) GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404CrossRefGoogle Scholar
  27. 27.
    Didelot X, Wilson DJ (2015) ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 11(2):e1004041CrossRefGoogle Scholar
  28. 28.
    Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175(3):1251–1266CrossRefGoogle Scholar
  29. 29.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704CrossRefGoogle Scholar
  30. 30.
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690CrossRefGoogle Scholar
  31. 31.
    Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174CrossRefGoogle Scholar
  32. 32.
    Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Holly B. Bratcher
    • 1
  • Odile B. Harrison
    • 1
    Email author
  • Martin C. J. Maiden
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations