Advertisement

In Vitro Models for Studying the Interaction of Neisseria meningitidis with Human Brain Endothelial Cells

  • Brandon J. Kim
  • Alexandra Schubert-UnkmeirEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1969)

Abstract

Bacterial meningitis is a serious, life-threatening infection of the central nervous system (CNS). To cause meningitis, bacteria must interact with and penetrate the meningeal blood-cerebrospinal fluid barrier (mB/CSFB), which comprises highly specialized brain endothelial cells. Neisseria meningitidis (meningococcus) is a leading cause of bacterial meningitis, and examination meningococcus’ interaction with the BBB is critical for understanding disease progression. To examine specific interactions, in vitro mB/CSFB models have been developed and employed and are of great importance because in vivo models have been difficult to produce considering Neisseria meningitidis is exclusively a human pathogen. Most in vitro blood-brain barrier and mB/CSF models use primary and immortalized brain endothelial cells, and these models have been used to examine bacterial–mB/CSFB interactions by a variety of pathogens. This chapter describes the use of past and current in vitro brain endothelial cells to model Neisseria meningitidis interaction with the mB/CSFB, and inform on the standard operating procedure for their use.

Key words

Neisseria meningitidis Blood-brain barrier Brain endothelium Meningitis Meningeal blood-cerebrospinal fluid barrier 

Notes

Acknowledgments

We would like to thank past and present laboratory members of the Schubert-Unkmeir laboratory at the Institute for Hygiene and Microbiology, University of Würzburg. Work in the Schubert-Unkmeir laboratory on the interaction of N. meningitidis with BECs was supported by grants of the Deutsche Forschungsgemeinschaft (SCHU2394/3-1, SCHU 2394/2-1, SCHU 2394/2-2 and GRK2157) to A.S.M. and an Alexander von Humboldt Postdoctoral Fellowship to B.J.K. We are grateful to Elizabeth M. Rossi M.F.A. for the generation of Fig. 1.

References

  1. 1.
    Doran KS, Fulde M, Gratz N et al (2016) Host–pathogen interactions in bacterial meningitis. Acta Neuropathol 131:185–209CrossRefGoogle Scholar
  2. 2.
    Coureuil M, Lécuyer H, Bourdoulous S, Nassif X (2017) A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 15:149–159CrossRefGoogle Scholar
  3. 3.
    Kim KS (2006) Microbial translocation of the blood-brain barrier. Int J Parasitol 36:607–614CrossRefGoogle Scholar
  4. 4.
    Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449.CrossRefGoogle Scholar
  5. 5.
    Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25CrossRefGoogle Scholar
  6. 6.
    Orr HJ, Gray SJ, Macdonald M, Stuart JM (2003) Saliva and meningococcal transmission. Emerg Infect Dis 9:1314–1315.CrossRefGoogle Scholar
  7. 7.
    Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–2210CrossRefGoogle Scholar
  8. 8.
    Unkmeir A, Latsch K, Dietrich G et al (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46:933–946.Google Scholar
  9. 9.
    Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90.CrossRefGoogle Scholar
  10. 10.
    Slanina H, König A, Hebling S et al (2010) Entry of Neisseria meningitidis into mammalian cells requires the Src family protein tyrosine kinases. Infect Immun 78:1905–1914.CrossRefGoogle Scholar
  11. 11.
    Nikulin J, Panzner U, Frosch M, Schubert-Unkmeir A (2006) Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int J Med Microbiol 296:553–558.Google Scholar
  12. 12.
    Stins MF, Badger J, Sik Kim K (2001) Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30:19–28.CrossRefGoogle Scholar
  13. 13.
    Sokolova O, Heppel N, Jägerhuber R et al (2004) Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 6:1153–1166.Google Scholar
  14. 14.
    Simonis A, Hebling S, Gulbins E et al (2014) Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog 10:e1004160.Google Scholar
  15. 15.
    Oosthuysen WF, Mueller T, Dittrich MT, Schubert-Unkmeir A (2015) Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2. Cell Microbiol 18:46–65.Google Scholar
  16. 16.
    Dick J, Hebling S, Becam J et al (2017) Comparison of the inflammatory response of brain microvascular and peripheral endothelial cells following infection with Neisseria meningitidis. Pathog Dis 75:1–11.Google Scholar
  17. 17.
    Burgert A, Schlegel J, Bécam J et al (2017) Characterization of plasma membrane ceramides by super-resolution microscopy. Angew Chem Int Ed Eng 56:6131–6135.CrossRefGoogle Scholar
  18. 18.
    Bernard SC, Simpson N, Join-Lambert O et al (2014) Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat Med 20:725–731.Google Scholar
  19. 19.
    Slanina H, Hebling S, Hauck CR, Schubert-Unkmeir A (2012) Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS One 7:e39613.Google Scholar
  20. 20.
    Weksler BB, Subileau EA, Perrière N et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874.CrossRefGoogle Scholar
  21. 21.
    Weksler B, Romero IA, Couraud P-O (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10:16.CrossRefGoogle Scholar
  22. 22.
    Coureuil M, Lécuyer H, Scott MGH et al (2010) Meningococcus hijacks a β2-adrenoceptor/β-arrestin pathway to cross brain microvasculature endothelium. Cell 143:1149–1160.CrossRefGoogle Scholar
  23. 23.
    Coureuil M, Mikaty G, Miller F et al (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325:83–87.CrossRefGoogle Scholar
  24. 24.
    Lécuyer H, Nassif X, Coureuil M (2012) Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect Immun 80:175–186.CrossRefGoogle Scholar
  25. 25.
    Kamiichi A, Furihata T, Kishida S et al (2012) Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies. Brain Res 1488:113–122.CrossRefGoogle Scholar
  26. 26.
    Banerjee A, Kim BJ, Carmona EM et al (2011) Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun 2:462.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Hygiene and MicrobiologyUniversity of WürzburgWürzburgGermany

Personalised recommendations