Advertisement

Protein Expression Analysis by Western Blot and Protein–Protein Interactions

  • María Dolores Cima-Cabal
  • Fernando Vazquez
  • Juan R. de los Toyos
  • María del Mar García-SuárezEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1968)

Abstract

Western blot analysis is widely used for detecting protein expression, analysis of protein–protein interactions, and searching for new biomarkers. Also, it is a diagnostic tool used for detection of human diseases and microorganism infections.

Some Streptococcus pneumoniae proteins are important virulence factors and a few of them are diagnostic markers. Here, we describe the detection of two pneumococcal proteins, pneumolysin and PpmA, in human urine by using monoclonal and polyclonal antibodies.

Key words

Western-blot Pneumolysin PpmA Monoclonal antibody Urine 

Notes

Acknowledgments

The authors acknowledge Dr. Federico Iovino from Karolinska Institute for inviting us to write this chapter and for reviewing the manuscript, and Dr. Fermín Torrano for his constant support in the preparation of this chapter.

References

  1. 1.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354CrossRefGoogle Scholar
  2. 2.
    Magi B, Liberatori S (2005) Immunoblotting techniques. Methods Mol Biol 295:227–254PubMedGoogle Scholar
  3. 3.
    Chi-Chih K, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE (2016) Single cell-resolution western blotting. Nat Protoc 11:1508–1530CrossRefGoogle Scholar
  4. 4.
    Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203CrossRefGoogle Scholar
  5. 5.
    Pluskal M, Przekop M, Kavonian M (1986) Immobilon® PVDF transfer membrane: a new membrane substrate for Western blotting of proteins. BioTechniques 4:272–283Google Scholar
  6. 6.
    Komatsu S (2015) Western blotting using PVDF membranes and its downstream applications. Methods Mol Biol 1312:227–236CrossRefGoogle Scholar
  7. 7.
    Yakunin AF, Hallenbeck PC (2001) A luminol/iodophenol chemiluminescent detection system for western immunoblots. In: Van Dyke K, Van Dyke C, Woodfork K (eds) Luminescence biotechnology: instruments and applications. CRC PressGoogle Scholar
  8. 8.
    Gingrich JC, Davis DR, Nguyen Q (2000) Multiplex detection and quantitation of proteins on western blots using fluorescent probes. BioTechniques 29:636–642CrossRefGoogle Scholar
  9. 9.
    Kondo Y, Higa S, Iwasaki T, Matsumoto T, Maehara K, Harada A, Baba Y, Fujita M, Ohkawa Y (2018) Sensitive detection of fluorescence in western blotting by merging images. PLoS One 13:e0191532CrossRefGoogle Scholar
  10. 10.
    Wu Y, Li Q, Chen XZ (2007) Detecting protein-protein interactions by far western blotting. Nat Protoc 2:3278–3284CrossRefGoogle Scholar
  11. 11.
    Rognon B, Reboux G, Roussel S, Barrera C, Dalphin JC, Fellrath JM, Monod M, Millon L (2015) Western blotting as a tool for the serodiagnosis of farmer’s lung disease: validation with Lichtheimia corymbifera protein extracts. J Med Microbiol 64:359–368CrossRefGoogle Scholar
  12. 12.
    García HH, Cancrini G, Bartalesi F, Rodriguez S, Jimenez JA, Roldan W, Mantella A, Nicoletti A, Bartoloni A (2007) Evaluation of immunodiagnostics for toxocarosis in experimental porcine cysticercosis. Tropical Med Int Health 12:107–110Google Scholar
  13. 13.
    Tappe D, Grüner B, Kern P, Frosch M (2008) Evaluation of a commercial Echinococcus Western blot assay for serological follow-up of patients with alveolar echinococcosis. Clin Vaccine Immunol 15:1633–1637CrossRefGoogle Scholar
  14. 14.
    Aslan M, Yüksel P, Polat E, Cakan H, Ergin S, Öner YA, Zengin K, Arıkan S, Saribas S, Torun MM, Kocazeybek B (2011) The diagnostic value of Western blot method in patients with cystic echinococcosis. New Microbiol 34:173–177PubMedGoogle Scholar
  15. 15.
    Magi B, Migliorini L (2011) Western blotting for the diagnosis of congenital toxoplasmosis. New Microbiol 34:93–95PubMedGoogle Scholar
  16. 16.
    Gómez-Morales MA, Ludovisi A, Amati M, Blaga R, Zivojinovic M, Ribicich M, Pozio E (2012) A distinctive Western blot pattern to recognize Trichinella infections in humans and pigs. Int J Parasitol 42:1017–1023CrossRefGoogle Scholar
  17. 17.
    Madan T, Priyadarsiny P, Vaid M, Kamal N, Shah A, Haq W, Katti SB, Sarma PU (2004) Use of a synthetic peptide epitope of asp f 1, a major allergen or antigen of Aspergillus fumigatus, for improved immunodiagnosis of allergic bronchopulmonary aspergillosis. Clin Diagn Lab Immunol 11:552–558PubMedPubMedCentralGoogle Scholar
  18. 18.
    Stopiglia CDO, Arechavala A, Carissimi M, Sorrentino JM, Aquino VR, Daboit TC, Kammler L, Negroni R, Scroferneker ML (2012) Standardization and characterization of antigens for the diagnosis of aspergillosis. Can J Microbiol 58:455–462CrossRefGoogle Scholar
  19. 19.
    Torian LV, Forgione LA, Punsalang AE, Pirillo RE, Oleszko WR (2011) Comparison of multispot EIA with Western blot for confirmatory serodiagnosis of HIV. J Clin Virol 52:S41–S44CrossRefGoogle Scholar
  20. 20.
    Hughesa AJ, Herra AE (2012) Microfluidic Western blotting. Proc Natl Acad Sci U S A 109:21450–21455CrossRefGoogle Scholar
  21. 21.
    Evans R, Mavin S, McDonagh S, Chatterton JM, Milner R, Ho-Yen DO (2010) More specific bands in the IgG western blot in sera from Scottish patients with suspected Lyme borreliosis. J Clin Pathol 63:719–721CrossRefGoogle Scholar
  22. 22.
    Gilbert RJ, Jiménez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655CrossRefGoogle Scholar
  23. 23.
    Coleman JR, Papamichail D, Yano M, García-Suárez MM, Pirofski LA (2011) Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J Infect Dis 203:1264–1273CrossRefGoogle Scholar
  24. 24.
    Shak JR, Ludewick HP, Howery KE, Sakai F, Yi H, Harvey RM, Paton JC, Klugman KP, Vidal JE (2013) Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. MBio 4:e00655–e00613.  https://doi.org/10.1128/mBio.00655-13.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mitchell TJ, Dalziel CE (2014) The biology of pneumolysin. Subcell Biochem 80:145–160CrossRefGoogle Scholar
  26. 26.
    Khan MN, Coleman JR, Vernatter J, Varshney AK, Dufaud C, Pirofski LA (2014) An ahemolytic pneumolysin of Streptococcus pneumoniae manipulates human innate and CD4+ T-cell responses and reduces resistance to colonization in mice in a serotype-independent manner. J Infect Dis 210:1658–1669CrossRefGoogle Scholar
  27. 27.
    Gilbert RJ (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66CrossRefGoogle Scholar
  28. 28.
    Farrand AJ, Hotze EM, Sato TK, Wade KR, Wimley WC, Johnson AE, Tweten RK (2015) The cholesterol-dependent cytolysin membrane-binding interface discriminates lipid environments of cholesterol to support β-barrel pore insertion. J Biol Chem 290:17733–17744CrossRefGoogle Scholar
  29. 29.
    Lukoyanova N, Hoogenboom BW, Saibil HR (2016) The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. J Cell Sci 129:2125–2133CrossRefGoogle Scholar
  30. 30.
    Ünal CM, Steinert M (2014) Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 78:544–571CrossRefGoogle Scholar
  31. 31.
    Dimou M, Venieraki A, Katinakis P (2017) Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 33:164.  https://doi.org/10.1007/s11274-017-2330-6CrossRefPubMedGoogle Scholar
  32. 32.
    Overweg K, Kerr A, Sluijter M, Jackson MH, Mitchell TJ, de Jong AP, de Groot R, Hermans PW (2000) The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 7:4180–4188CrossRefGoogle Scholar
  33. 33.
    Hermans PW, Adrian PV, Albert C, Estevão S, Hoogenboezem T, Luijendijk IH, Kamphausen T, Hammerschmidt S (2006) The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J Biol Chem 281:968–976CrossRefGoogle Scholar
  34. 34.
    Cilloniz C, Martin-Loeches I, Garcia-Vidal C, San Jose A, Torres A (2016) Microbial etiology of pneumonia: epidemiology, diagnosis and resistance patterns. Int J Mol Sci 17:2120.  https://doi.org/10.3390/ijms17122120CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Saukkoriipi A, Pascal T, Palmu AA (2016) Evaluation of the BinaxNOW® Streptococcus pneumoniae antigen test on fresh, frozen and concentrated urine samples in elderly patients with and without community-acquired pneumonia. J Microbiol Methods 121:24–26CrossRefGoogle Scholar
  36. 36.
    Gina P, Randall PJ, Muchinga TE, Pooran A, Meldau R, Peter JG, Dheda K (2017) Early morning urine collection to improve urinary lateral flow LAM assay sensitivity in hospitalised patients with HIV-TB co-infection. BMC Infect Dis 17:339.  https://doi.org/10.1186/s12879-017-2313-0CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Syam AF, Miftahussurur M, Uwan W, Simanjuntak D, Uchida T, Yamaoka Y (2015) Validation of urine test for detection of Helicobacter pylori infection in Indonesian population. Biomed Res Int 2015:152823.  https://doi.org/10.1155/2015/152823CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saengjaruk P, Chaicumpa W, Watt G, Bunyaraksyotin G, Wuthiekanun V, Tapchaisri P, Sittinont C, Panaphut T, Tomanakan K, Sakolvaree Y, Chongsa-Nguan M, Mahakunkijcharoen Y, Kalambaheti T, Naigowit P, Wambangco MAL, Kurazono H, Hayashi H (2002) Diagnosis of human leptospirosis by monoclonal antibody-based antigen detection in urine. J Clin Microbiol 40:480–489CrossRefGoogle Scholar
  39. 39.
    Theel ES, Jespersen DJ, Harring J, Mandrekar J, Binnicker MJ (2013) Evaluation of an enzyme immunoassay for detection of histoplasma capsulatum antigen from urine specimens. J Clin Microbiol 51:3555–3559CrossRefGoogle Scholar
  40. 40.
    Chuansumrit A, Chaiyaratana W, Tangnararatchakit K, Yoksan S, Flamand M, Sakuntabhai A (2011) Dengue nonstructural protein 1 antigen in the urine as a rapid and convenient diagnostic test during the febrile stage in patients with dengue infection. Diagn Microbiol Infect Dis 71:467–469CrossRefGoogle Scholar
  41. 41.
    Cima-Cabal MD, Méndez FJ, Vázquez F, Aranaz C, Rodríguez-Alvarez J, García-García JM, Fleites A, Martínez González-Río J, Molinos L, de Miguel D, de los Toyos JR (2003) Immunodetection of pneumolysin in human urine by ELISA. J Microbiol Methods 54:47–55CrossRefGoogle Scholar
  42. 42.
    García-Suárez MM, Cron LE, Suárez-Alvarez B, Villaverde R, González-Rodríguez I, Vázquez F, Hermans PW, Méndez FJ (2009) Diagnostic detection of Streptococcus pneumoniae PpmA in urine. Clin Microbiol Infect 15:443–453CrossRefGoogle Scholar
  43. 43.
    Cima-Cabal MD, Vázquez F, de los Toyos JR, Méndez FJ (1999) Rapid and reliable identification of Streptococcus pneumoniae isolates by pneumolysin-mediated agglutination. J Clin Microbiol 37:1964–1966PubMedPubMedCentralGoogle Scholar
  44. 44.
    de los Toyos JR, Mendez FJ, Aparicio JF, Vazquez F, Garcia-Suarez MM, Fleites A, Hardisson C, Morgan PJ, Andrew PW, Mitchell TJ (1996) Functional analysis of pneumolysin by use of monoclonal antibodies. Infect Immun 64:480–484PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Dolores Cima-Cabal
    • 1
  • Fernando Vazquez
    • 2
    • 3
  • Juan R. de los Toyos
    • 4
  • María del Mar García-Suárez
    • 1
    Email author
  1. 1.Escuela Superior de Ingeniería y Tecnología (ESIT)Universidad Internacional de La Rioja (UNIR)LogroñoSpain
  2. 2.Departamento de MicrobiologíaHospital Universitario Central de Asturias & Fundación para la Investigación y la Innovación Biosanitaria del Principado de Asturias (FINBA)OviedoSpain
  3. 3.Departamento de Biología Funcional & OphthalmologyVision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedoSpain
  4. 4.Área de Inmunología, Facultad de Medicina y Ciencias de la SaludUniversidad de OviedoOviedoSpain

Personalised recommendations