In Vivo Mouse Models to Study Pneumococcal Host Interaction and Invasive Pneumococcal Disease

  • Federico IovinoEmail author
  • Vicky Sender
  • Birgitta Henriques-Normark
Part of the Methods in Molecular Biology book series (MIMB, volume 1968)


Animal models are fundamental tools to study the biology of physiological processes and disease pathogenesis. To study invasive pneumococcal disease (IPD), many models using mice in particular have been established and developed during recent years. Thanks to the advances of the research in the pneumococcal field, nowadays, there is the possibility to use defined mouse models to study each disease caused by the pneumococcus. In this chapter mouse models for pneumonia, bacteremia, and meningitis are described. Since pneumococci are commensal pathogens found to a high extent in healthy individuals. Hence, we also describe a mouse model for nasopharyngeal colonization.

Key words

In vivo Mouse models Pneumonia Meningitis Invasive pneumococcal disease Colonization Coinfection 


  1. 1.
    Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson S, Stanaway JD, Deshpande A, Farag T, et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 18(11):1191–1210. Published online 2018/09/24
  2. 2.
    Malley R, Weiser JN (2008) Animal models of pneumococcal colonization. In: Siber GR, Klugman KP, Mäkelä PH (ed.) Pneumococcal vaccines: the impact of coniugate vaccine. ASM Press, Washington, DC, pp 59–66Google Scholar
  3. 3.
    Briles DE, Hollingshead SK, Jonsdottir I (2008) Animal models of invasive pneumococcal disease. In: Siber GR, Klugman KP, Mäkelä PH (ed.), Pneumococcal vaccines: the impact of conjugate vaccine. ASM Press, Washington, DC, pp 47–58Google Scholar
  4. 4.
    Chiavolini D, Pozzi G, Ricci S (2008) Animal models of Streptococcus pneumoniae disease. Clin Microbiol Rev 21:666–685CrossRefGoogle Scholar
  5. 5.
    Kadioglu A, Andrew PW (2005) Susceptibility and resistance to pneumococcal disease in mice. Brief Funct Genomic Proteomic 4(3):241–247CrossRefGoogle Scholar
  6. 6.
    Blue CE, Mitchell TJ (2003) Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect Immun 71:4405–4413CrossRefGoogle Scholar
  7. 7.
    Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6(4):288–301CrossRefGoogle Scholar
  8. 8.
    Sandgren A, Albiger B, Orihuela CJ, Tuomanen E, Normark S, Henriques-Normark B (2005) Virulence in mice of pneumococcal clonal types with known invasive disease potential in humans. J Infect Dis 192(5):791–800CrossRefGoogle Scholar
  9. 9.
    Nuermberger E (2005) Murine models of pneumococcal pneumonia and their applicability to the study of tissue-directed antimicrobials. Pharmacotherapy 25:134S–139SCrossRefGoogle Scholar
  10. 10.
    Steinhoff MC (2007) Animal models for protein pneumococcal vaccine evaluation: a summary. Vaccine 25(13):2465–2470CrossRefGoogle Scholar
  11. 11.
    Matrosovich M, Matrosovich T, Garten W, Klenk H-D Virol J 3(1):63Google Scholar
  12. 12.
    Zhang JR, Mostov KE, Lamm ME et al (2000) The polymeric immunoglobulin receptor translocates pneumococci across humannasopharyngeal epithelial cells. Cell. 102:827–37CrossRefGoogle Scholar
  13. 13.
    Hentrich K, Löfling J, Pathak A et al (2016) Streptococcus pneumoniae senses a human-like sialic acid profile via the response regulator CiaR. Cell Host Microbe 20:307–317CrossRefGoogle Scholar
  14. 14.
    Rayamajhi M, Redente EF, Condon TV et al (2011) Non-surgical intratracheal instillation of mice with analysis of lungs and lung draining lymph nodes by flow cytometry. J Vis Exp 51:e2702Google Scholar
  15. 15.
    Orihuela CJ, Gao G, Francis KP et al (2004) Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190:1661–1669CrossRefGoogle Scholar
  16. 16.
    Iovino F, Engelen-Lee JY, Brouwer M et al (2017) pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. J Exp Med 214:1619–1630CrossRefGoogle Scholar
  17. 17.
    Iovino F, Thorsdottir S, Henriques-Normark B (2018) Receptor blockade: a novel approach to protect the brain from pneumococcal invasion. J Infect Dis 218(3):476–484CrossRefGoogle Scholar
  18. 18.
    Shrestha S, Foxman B, Weinberger DM et al (2013) Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Sci Transl Med 5:191ra84CrossRefGoogle Scholar
  19. 19.
    Iovino F, Seinen J, Henriques-Normark B et al (2016) How does Streptococcus pneumoniae invade the brain. Trends Microbiol 24:307–315CrossRefGoogle Scholar
  20. 20.
    Orihuela CJ, Mahdavi J, Thornton J et al (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119:1638–1646CrossRefGoogle Scholar
  21. 21.
    Iovino F, Orihuela CJ, Moorlag HE et al (2013) Interactions between blood-borne Streptococcus pneumoniae and the blood-brain barrier preceding meningitis. PLoS One 8:e68408CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Federico Iovino
    • 1
    • 2
    Email author
  • Vicky Sender
    • 1
  • Birgitta Henriques-Normark
    • 1
    • 2
    • 3
  1. 1.Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet, BioclinicumStockholmSweden
  2. 2.Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
  3. 3.Singapore Centre on Environmental Life Sciences Engineering (SCELSE), and Lee Kong Chian School of Medicine (LCK)Nanyang Technological University (NTU)SingaporeSingapore

Personalised recommendations