Advertisement

Protocols of IATC, DSC, and PPC: The Multistate Structural Transition of Cytochrome c

  • Shigeyoshi Nakamura
  • Shun-ichi KidokoroEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1964)

Abstract

The recent development of high-precision calorimeters allows us to monitor the structural transition of biomolecules by calorimetry and thereby characterize the thermodynamic property changes accompanying three-dimensional structure changes. We developed isothermal acid-titration calorimetry (IATC) to evaluate the pH dependence of protein enthalpy. Using the double deconvolution method with precise differential scanning calorimetry (DSC), we revealed that the MG state is an equilibrium intermediate state of the reversible thermal three-state transition of the protein, and we successfully determined its volumetric properties by pressure perturbation calorimetry (PPC). Our findings underscore the importance of a precise calorimetry and analysis model for protein research.

Key words

Differential scanning calorimetry Pressure perturbation calorimetry Cytochrome c Isothermal acid-titration calorimetry 

References

  1. 1.
    Khechinashvili NN, Privalov PL, Tiktopulo EI (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Lett 30:57–60CrossRefGoogle Scholar
  2. 2.
    Privalov PL, Khechinashvili NN (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86:665–684CrossRefGoogle Scholar
  3. 3.
    Pfeil W, Privalov PL (1976) Thermodynamic investigations of proteins. I. Standard functions for proteins with lysozyme as an example. Biophys Chem 4:23–32CrossRefGoogle Scholar
  4. 4.
    Pfeil W, Privalov PL (1976) Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys Chem 4:33–40CrossRefGoogle Scholar
  5. 5.
    Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241CrossRefGoogle Scholar
  6. 6.
    Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104CrossRefGoogle Scholar
  7. 7.
    Privalov PL, Griko Y u V, Venyaminov SYU, Kutyshenko VP (1986) Cold denaturation of myoglobin. J Mol Biol 190:487–498CrossRefGoogle Scholar
  8. 8.
    Kuroki R, Inaka K, Taniyama Y, Kidokoro S, Matsushima M, Kikuchi M, Yutani K (1992) Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine-77 and cysteine-95. Biochemistry 31:8323–8328CrossRefGoogle Scholar
  9. 9.
    Makhatadze GI, Privalov PL (1993) Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J Mol Biol 232:639–659CrossRefGoogle Scholar
  10. 10.
    Privalov PL, Makhatadze GI (1993) Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol 232:660–679CrossRefGoogle Scholar
  11. 11.
    Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425CrossRefGoogle Scholar
  12. 12.
    Funahashi J, Takano K, Yamagata Y, Yutani K (2000) Role of surface hydrophobic residues in the conformational stability of human lysozyme at three different positions. Biochemistry 39:14448–14456CrossRefGoogle Scholar
  13. 13.
    Takano K, Yamagata Y, Yutani K (2001) Contribution of polar groups in the interior of a protein to the conformational stability. Biochemistry 40:4853–4858CrossRefGoogle Scholar
  14. 14.
    Kidokoro S, Wada A (1987) Determination of thermodynamic functions from scanning calorimetry data. Biopolymers 26:213–229CrossRefGoogle Scholar
  15. 15.
    Kidokoro S, Uedaira H, Wada A (1988) Determination of thermodynamic functions from scanning calorimetry data. II. For the system that includes self-dissociation/association process. Biopolymers 27:271–297CrossRefGoogle Scholar
  16. 16.
    Privalov PL, Makhatadze GI (1990) Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol 213:385–391CrossRefGoogle Scholar
  17. 17.
    Makhatadze GI, Privalov PL (1990) Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol 213:375–384CrossRefGoogle Scholar
  18. 18.
    Loladze VV, Ermolenko DN, Makhatadze GI (2001) Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci 10:1343–1352CrossRefGoogle Scholar
  19. 19.
    Lin LN, Brandts JF, Brandts JM, Plotnikov V (2002) Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal Biochem 302:144–160CrossRefGoogle Scholar
  20. 20.
    Mitra L, Smolin N, Ravindra R, Royer C, Winter R (2006) Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution—experiments and theoretical interpretation. Phys Chem Chem Phys 8:1249–1265CrossRefGoogle Scholar
  21. 21.
    Schweiker KL, Fitz W, Makhatadze GI (2009) Universal convergence of the specific volume changes of globular proteins upon unfolding. Biochemistry 48:10846–10851CrossRefGoogle Scholar
  22. 22.
    Nakamura S, Kidokoro S (2012) Volumetric properties of the molten globule state of cytochrome c in the thermal three-state transition evaluated by pressure perturbation calorimetry. J Phys Chem B 116:1927–1932CrossRefGoogle Scholar
  23. 23.
    Jamin M, Antalik M, Loh SN, Bolen DW, Baldwin RL (2000) The unfolding enthalpy of the pH 4 molten globule of apomyoglobin measured by isothermal titration calorimetry. Protein Sci 9:1340–1346CrossRefGoogle Scholar
  24. 24.
    Hamada D, Kidokoro S, Fukada H, Takahashi K, Goto Y (1994) Salt-induced formation of the molten globule state of cytochrome c studied by isothermal titration calorimetry. Proc Natl Acad Sci U S A 91:10325–10329CrossRefGoogle Scholar
  25. 25.
    Nakamura S, Kidokoro S (2004) Isothermal acid-titration calorimetry for evaluating the pH dependence of protein stability. Biophys Chem 109:229–249CrossRefGoogle Scholar
  26. 26.
    Nakamura S, Kidokoro S (2005) Direct observation of the enthalpy change accompanying the native to molten-globule transition of cytochrome c by using isothermal acid-titration calorimetry. Biophys Chem 113:161–168CrossRefGoogle Scholar
  27. 27.
    Nakamura S, Baba T, Kidokoro S (2007) A molten globule-like intermediate state detected in the thermal transition of cytochrome c under low salt concentration. Biophys Chem 127:103–112CrossRefGoogle Scholar
  28. 28.
    Nakamura S, Seki Y, Katoh E, Kidokoro S (2011) Thermodynamic and structural properties of the acid molten globule state of horse cytochrome c. Biochemistry 50:3116–3126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of General EducationNational Institute of Technology, Ube CollegeUbeJapan
  2. 2.Department of BioengineeringNagaoka University of TechnologyNagaokaJapan

Personalised recommendations