Measuring the Metabolic Activity of Mature Mycobacterial Biofilms Using Isothermal Microcalorimetry

  • Anna Solokhina
  • Gernot Bonkat
  • Olivier BraissantEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1964)


Measuring metabolic activity and response of biofilm to different conditions or compounds is of general interest but is also expected to help in developing new antibiofilm compounds and potentially new treatments. Current culture-based and microscopic methods although of much use have several drawbacks. Isothermal calorimetry can be useful in this context by allowing measurements of the metabolic activity of biofilm grown and maintained on solid medium. Biofilms prepared on membranes were placed in calorimetry vials containing solid medium. Sealed vials were introduced in an isothermal calorimeter, and the rate of metabolic heat production was monitored over time. We chose mycobacteria as an example for this paper as working with mycobacterial biofilms is notoriously difficult.

Key words

Biofilms Mycobacteria Isothermal titration calorimetry 



The calorimetry work at the Center of Biomechanics and Biocalorimetry in the University of Basel is possible due to the generous financial support of the Merian Iselin Stiftung and support of the colleagues from the Merian Iselin Spital.


  1. 1.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefGoogle Scholar
  2. 2.
    Sutherland IW (2001) The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227CrossRefGoogle Scholar
  3. 3.
    Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9CrossRefGoogle Scholar
  4. 4.
    Costerton J, Montanaro L, Arciola CR (2007) Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs 30:757–763CrossRefGoogle Scholar
  5. 5.
    Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28:1062–1068CrossRefGoogle Scholar
  6. 6.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138CrossRefGoogle Scholar
  7. 7.
    Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefGoogle Scholar
  8. 8.
    Guimond-Lischer S, Ren Q, Braissant O, Gruner P, Wampfler B, Maniura-Weber K (2016) Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. Biointerphases 11:011012CrossRefGoogle Scholar
  9. 9.
    Braissant O, Chavanne P, de Wild M, Pieles U, Stevanovic S, Schumacher R, Straumann L, Wirz D, Gruner P, Bachmann A, Bonkat G (2015) Novel microcalorimetric assay for antibacterial activity of implant coatings: The cases of silver-doped hydroxyapatite and calcium hydroxide. J Biomed Mater Res 103:1161–1167CrossRefGoogle Scholar
  10. 10.
    Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Wirz D, Weiger R, Waltimo T (2011) Quantification of vital adherent Streptococcus sanguinis cells on protein-coated titanium after disinfectant treatment. J Mater Sci-Mater 22:2045–2051CrossRefGoogle Scholar
  11. 11.
    Braissant O, Wirz D, Goepfert B, Daniels AU (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303:1–8CrossRefGoogle Scholar
  12. 12.
    James A (1987) Calorimetry past, present and future. Thermal and energetic studies of cellular biological systems. Wright, BristolGoogle Scholar
  13. 13.
    Wadso I (2002) Isothermal microcalorimetry in applied biology. Thermochim Acta 394:305–311CrossRefGoogle Scholar
  14. 14.
    Wadso I, Goldberg RN (2001) Standards in isothermal microcalorimetry (IUPAC technical report). Pure Appl Chem 73:1625–1639CrossRefGoogle Scholar
  15. 15.
    Maiolo EM, Tafin UF, Borens O, Trampuz A (2014) Activities of fluconazole, caspofungin, anidulafungin, and amphotericin b on planktonic and biofilm candida species determined by microcalorimetry. Antimicrob Agents 58:2709–2717CrossRefGoogle Scholar
  16. 16.
    Mihailescu R, Tafin UF, Corvec S, Oliva A, Betrisey B, Borens O, Trampuz A (2014) High activity of fosfomycin and rifampin against methicillinresistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 58:2547–2553CrossRefGoogle Scholar
  17. 17.
    Buchholz F, Wolf A, Lerchner J, Mertens F, Harms H, Maskow T (2010) Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 54:312–319CrossRefGoogle Scholar
  18. 18.
    Mariana F, Buchholz F, Lerchner J, Neu TR, Harms H, Maskow T (2013) Chip-calorimetric monitoring of biofilm eradication with antibiotics provides mechanistic information. Int J Med Microbiol 303:158–165CrossRefGoogle Scholar
  19. 19.
    Said J, Walker M, Parsons D, Stapleton P, Beezer AE, Gaisford S (2015) Development of a flow system for studying biofilm formation on medical devices with microcalorimetry. Methods 76:35–40CrossRefGoogle Scholar
  20. 20.
    Merritt JH, Kadouri DE, O'Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol 1B:18Google Scholar
  21. 21.
    Mikkelsen H, Duck Z, Lilley KS, Welch M (2007) Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189:2411–2416CrossRefGoogle Scholar
  22. 22.
    Kientz B, Luke S, Vukusic P, Peteri R, Beaudry C, Renault T, Simon D, Mignot T, Rosenfeld E (2016) A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms. Sci Rep 6:19906CrossRefGoogle Scholar
  23. 23.
    Kulka K, Hatfull G, Ojha AK (2012) Growth of Mycobacterium tuberculosis biofilms. J Vis Exp 60:3820Google Scholar
  24. 24.
    Ojha AK, Hatfull GF (2012) Biofilms of Mycobacterium tuberculosis: new perspectives of an old pathogen. Understanding tuberculosis - deciphering the secret life of the bacilli. Intech, LondonGoogle Scholar
  25. 25.
    Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174CrossRefGoogle Scholar
  26. 26.
    Atlas RM (2010) Handbook of microbiological media. CRC press, Boca Raton (FL)CrossRefGoogle Scholar
  27. 27.
    Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta 555:64–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna Solokhina
    • 1
  • Gernot Bonkat
    • 2
  • Olivier Braissant
    • 1
    Email author
  1. 1.Center of Biomechanics and BiocalorimetryUniversity Basel, c/o Department of Biomedical Engineering (DBE)AllschwilSwitzerland
  2. 2.alta uro AGBaselSwitzerland

Personalised recommendations