Ancient DNA pp 195-213 | Cite as

Assembly of Ancient Mitochondrial Genomes Without a Closely Related Reference Sequence

  • Christoph Hahn
Part of the Methods in Molecular Biology book series (MIMB, volume 1963)


Recent methodological advances have transformed the field of ancient DNA (aDNA). Basic bioinformatics skills are becoming essential requirements to process and analyze the sheer amounts of data generated by current aDNA studies and in biomedical research in general. This chapter is intended as a practical guide to the assembly of ancient mitochondrial genomes, directly from genomic DNA-derived next-generation sequencing (NGS) data, specifically in the absence of closely related reference genomes. In a hands-on tutorial suitable for readers with little to no prior bioinformatics experience, we reconstruct the mitochondrial genome of a woolly mammoth deposited ~45,000 years ago. We introduce key software tools and outline general strategies for mitogenome assembly, including the critical quality assessment of assembly results without a reference genome.

Key words

Ancient DNA Genome assembly Bioinformatics Mitogenomics Next-generation sequencing 


  1. 1.
    Green RE et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722CrossRefGoogle Scholar
  2. 2.
    Meyer M et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226CrossRefGoogle Scholar
  3. 3.
    Schubert M et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A 111:E5661–E5669CrossRefGoogle Scholar
  4. 4.
    Palkopoulou E et al (2015) Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol 25:1395–1400CrossRefGoogle Scholar
  5. 5.
    Węcek K et al (2016) Complex admixture preceded and followed the extinction of wisent in the wild. Mol Biol Evol.
  6. 6.
    Barnett R et al (2016) Mitogenomics of the extinct cave lion, Panthera spelaea (Goldfuss, 1810), resolve its position within the Panthera cats. Open Quaternary 2:4CrossRefGoogle Scholar
  7. 7.
    Lindqvist C et al (2010) Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc Natl Acad Sci U S A 107:5053–5057CrossRefGoogle Scholar
  8. 8.
    Llamas B et al (2016) Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci Adv 2:e1501385CrossRefGoogle Scholar
  9. 9.
    Hervella M et al (2016) The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa. Sci Rep 6:25501CrossRefGoogle Scholar
  10. 10.
    Soubrier J et al (2016) Early cave art and ancient DNA record the origin of European bison. Nat Commun 7:13158CrossRefGoogle Scholar
  11. 11.
    Paijmans JLA, Gilbert MTP, Hofreiter M (2013) Mitogenomic analyses from ancient DNA. Mol Phylogenet Evol 69:404–416CrossRefGoogle Scholar
  12. 12.
    Soares AER et al (2016) Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation. BMC Evol Biol 16:230CrossRefGoogle Scholar
  13. 13.
    Gansauge M-T, Meyer M (2014) Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res 24:1543–1549CrossRefGoogle Scholar
  14. 14.
    Carpenter ML et al (2013) Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet 93:852–864CrossRefGoogle Scholar
  15. 15.
    Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14:157–167CrossRefGoogle Scholar
  16. 16.
    Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129CrossRefGoogle Scholar
  17. 17.
    Chevreux B, Wetter T, Suhai S et al (1999) Genome sequence assembly using trace signals and additional sequence information. German Conf Bioinformatics 99:45–56Google Scholar
  18. 18.
    Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771CrossRefGoogle Scholar
  19. 19.
    Arnason U et al (2008) Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 421:37–51CrossRefGoogle Scholar
  20. 20.
    Camacho C et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421CrossRefGoogle Scholar
  21. 21.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  22. 22.
    Milne I et al (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202CrossRefGoogle Scholar
  23. 23.
    Rogaev EI et al (2006) Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biol 4:e73CrossRefGoogle Scholar
  24. 24.
    Lavrov DV, Pett W (2016) Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol Evol 8:2896–2913CrossRefGoogle Scholar
  25. 25.
    Bernt M et al (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319CrossRefGoogle Scholar
  26. 26.
    Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191CrossRefGoogle Scholar
  27. 27.
    Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278CrossRefGoogle Scholar
  28. 28.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  29. 29.
    Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefGoogle Scholar
  30. 30.
    Hunter SS et al (2015) Assembly by reduced complexity (ARC): a hybrid approach for targeted assembly of homologous sequences. bioRxiv 014662. doi:10.1101/014662Google Scholar
  31. 31.
    Green RE et al (2008) A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134:416–426CrossRefGoogle Scholar
  32. 32.
    Brankovics B et al (2016) GRAbB: selective assembly of genomic regions, a new niche for genomic research. PLoS Comput Biol 12:e1004753CrossRefGoogle Scholar
  33. 33.
    Diercksens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christoph Hahn
    • 1
  1. 1.Institute of BiologyUniversity of GrazGrazAustria

Personalised recommendations