Advertisement

Ancient DNA pp 141-147 | Cite as

Targeted PCR Amplification and Multiplex Sequencing of Ancient DNA for SNP Analysis

  • Saskia Wutke
  • Arne LudwigEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1963)

Abstract

The analysis of single-nucleotide polymorphisms (SNPs) has proven to be advantageous for addressing variation within samples of highly degraded or low-quality DNA samples. This is because only short fragments need to be amplified to analyze SNPs, and this can be achieved by multiplex PCR. Here, we present a sensitive method for the targeted sequencing of SNP loci that requires only small amounts of template DNA. The approach combines multiplex amplification of very short fragments covering SNP positions followed by sample barcoding and next-generation sequencing. This method allows generation of data from large sample sets of poorly preserved specimens, such as fossil remains, forensic samples, and museum specimens. The approach is cost-effective, rapid, and applicable to forensics, population genetics, and phylogenetic research questions.

Key words

Ancient DNA Single-nucleotide polymorphism Multiplex PCR Next-generation sequencing Library preparation 

Notes

Acknowledgments

Thanks to Johanna Paijmans for the opportunity to contribute to this special edition and to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

  1. 1.
    Hofreiter M, Serre D, Poinar HN et al (2001) Ancient DNA. Nat Rev Genet 2(5):353–359CrossRefGoogle Scholar
  2. 2.
    Pääbo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38(1):645–679CrossRefGoogle Scholar
  3. 3.
    Morin PA, Mccarthy M (2007) Highly accurate SNP genotyping from historical and low-quality samples. Mol Ecol Notes 7(6):937–946CrossRefGoogle Scholar
  4. 4.
    Narum SR, Buerkle CA, Davey JW et al (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22(11):2841–2847CrossRefGoogle Scholar
  5. 5.
    Cronin MA, Cánovas A, Bannasch DL et al (2014) Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America. J Hered.  https://doi.org/10.1093/jhered/esu075
  6. 6.
    Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29(1):51–63CrossRefGoogle Scholar
  7. 7.
    Svensson EM, Anderung C, Baubliene J et al (2007) Tracing genetic change over time using nuclear SNPs in ancient and modern cattle. Anim Genet 38(4):378–383CrossRefGoogle Scholar
  8. 8.
    Svensson EM, Telldahl Y, Sjöling E et al (2012) Coat colour and sex identification in horses from Iron Age Sweden. Ann Anat 194(1):82–87CrossRefGoogle Scholar
  9. 9.
    Bouakaze C, Keyser C, Crubézy E et al (2009) Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis. Int J Legal Med 123(4):315–325CrossRefGoogle Scholar
  10. 10.
    Pruvost M, Reissmann M, Benecke N et al (2012) From genes to phenotypes—evaluation of two methods for the SNP analysis in archaeological remains: pyrosequencing and competitive allele specific PCR (KASPar). Ann Anat 194(1):74–81CrossRefGoogle Scholar
  11. 11.
    Fortes GG, Speller CF, Hofreiter M et al (2013) Phenotypes from ancient DNA: approaches, insights and prospects. BioEssays 35(8):690–695CrossRefGoogle Scholar
  12. 12.
    Hofreiter M, Paijmans JLA, Goodchild H et al (2015) The future of ancient DNA: technical advances and conceptual shifts. BioEssays 37(3):284–293CrossRefGoogle Scholar
  13. 13.
    Stiller M, Knapp M, Stenzel U et al (2009) Direct multiplex sequencing (DMPS)—a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA. Genome Res 19:1943–1848CrossRefGoogle Scholar
  14. 14.
    Wutke S et al (2016) The origin of ambling horses. Curr Biol 26(15):R697–R699CrossRefGoogle Scholar
  15. 15.
    Wutke S et al (2016) Spotted phenotypes lost attractiveness in the Middle Ages. Sci Rep 6:38548CrossRefGoogle Scholar
  16. 16.
    Dabney J, Knapp M, Glocke I et al (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci 10(39):15758–15763CrossRefGoogle Scholar
  17. 17.
    Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93(1):125–128CrossRefGoogle Scholar
  18. 18.
    Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc London B 272(1558):3–16CrossRefGoogle Scholar
  19. 19.
    Wutke S, Sandoval-Castellanos E, Benecke N, Döhle H-J, Friederich S, Gonzalez J, Hofreiter M, Lõugas L, Magnell O, Malaspinas A-S, Morales-Muñiz A, Orlando L, Reissmann M, Trinks A, Ludwig A (2018) Decline of genetic diversity in ancient domestic stallions in Europe. Sci Adv 4(4):eaap9691CrossRefGoogle Scholar
  20. 20.
    Sandoval-Castellanos E, Wutke S, Gonzalez-Salazar C, Ludwig A (2017) Coat colour adaptation of post-glacial horses to increasing forest vegetation. Nat Ecol Evol 1(12):1816–1819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
  2. 2.Department of Evolutionary GeneticsLeibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany

Personalised recommendations