• Maria Pallarès Masmitjà
  • Nastassia Knödlseder
  • Marc GüellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1961)


Gene editing has great therapeutic impact, being of interest for many scientists worldwide. Clustered regularly interspaced short palindromic repeats (CRISPR) technology has been adapted for gene editing to serve as an efficient, rapid, and cost-effective tool. To fulfill CRISPR experiment’s goals, two components are important: an endonuclease and a gRNA. The most commonly used endonucleases are Cpf1 and Cas9 and are described in depth in this chapter. The gRNA targets the genome site to be edited, giving great importance to its design to obtain increased efficiency and decreased off-target events. In this chapter, we describe different tools to design suitable gRNAs for a variety of experimental purposes.

Key words

CRISPR gRNA design Genome editing Cas9 Cpf1 


  1. 1.
    Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740CrossRefGoogle Scholar
  2. 2.
    Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23:R40–R46CrossRefGoogle Scholar
  3. 3.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefGoogle Scholar
  4. 4.
    Nishimasu H, Nureki O (2017) Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol 43:68–78CrossRefGoogle Scholar
  5. 5.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefGoogle Scholar
  6. 6.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7CrossRefGoogle Scholar
  7. 7.
    Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefGoogle Scholar
  8. 8.
    Wen W-S, Yuan Z-M, Ma S-J, Xu J, Yuan D-T (2016) CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer 138:1328–1336CrossRefGoogle Scholar
  9. 9.
    Kim HK, Song M, Lee J, Vipin Menon A, Jung S, Kang Y-M et al (2016) In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nat Methods 14:153–159CrossRefGoogle Scholar
  10. 10.
    Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M et al (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16:257. Scholar
  11. 11.
    Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218CrossRefGoogle Scholar
  12. 12.
    Haeussler M, Concordet J-P (2016) Genome editing with CRISPR-Cas9: can it get any better? J Genet Genomics 43:239–250CrossRefGoogle Scholar
  13. 13.
    Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982–988CrossRefGoogle Scholar
  14. 14.
    Malina A, Cameron CJF, Robert F, Blanchette M, Dostie J, Pelletier J (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124CrossRefGoogle Scholar
  15. 15.
    Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148CrossRefGoogle Scholar
  16. 16.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191CrossRefGoogle Scholar
  17. 17.
    Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101CrossRefGoogle Scholar
  18. 18.
    Abadi S, Yan WX, Amar D, Mayrose I (2017) A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. Public Library of Science 13:e1005807CrossRefGoogle Scholar
  19. 19.
    Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM et al (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. NIH Public Access 34:869CrossRefGoogle Scholar
  20. 20.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Keith Joung J et al (2013) High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. NIH Public Access 31:822CrossRefGoogle Scholar
  21. 21.
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Cold Spring Harbor Laboratory Press 24:132CrossRefGoogle Scholar
  22. 22.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88CrossRefGoogle Scholar
  23. 23.
    Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. Cell Press 4:e264. Scholar
  24. 24.
    Jeffry D, Sander JKJ (2014) CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol. NIH Public Access 32:347CrossRefGoogle Scholar
  25. 25.
    Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P et al (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061CrossRefGoogle Scholar
  26. 26.
    Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344CrossRefGoogle Scholar
  27. 27.
    Shrock E, Güell M (2017) CRISPR in animals and animal models. Prog Mol Biol Transl Sci. Academic Press 152:95–114CrossRefGoogle Scholar
  28. 28.
    Guell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30:2968–2970CrossRefGoogle Scholar
  29. 29.
    Pinello L, Canver MC, Hoban MD, Orkin SH, Kohn DB, Bauer DE et al (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34:695–697CrossRefGoogle Scholar
  30. 30.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197CrossRefGoogle Scholar
  31. 31.
    Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 14:607–614CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria Pallarès Masmitjà
    • 1
  • Nastassia Knödlseder
    • 1
  • Marc Güell
    • 1
    Email author
  1. 1.Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations