Advertisement

Protein Biomarker Discovery Using Human Blood Plasma Microparticles

  • Raghda Saad Zaghloul Taleb
  • Pacint Moez
  • Doreen Younan
  • Martin Eisenacher
  • Matthias Tenbusch
  • Barbara Sitek
  • Thilo BrachtEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1959)

Abstract

Cells shed into the extracellular space a population of membranous vesicles of plasma membrane origin called microparticles (MP). Given the fact that MP are abundantly present in body fluids including plasma, rich in cell-type or disease-specific proteins and formed in conditions of stress and injury, they have been extensively investigated as biomarkers in various diseases. With the advancement in the mass spectrometry-based proteome analysis, the knowledge of the protein composition of plasma MP (PMP) has been intensively expanded, which aids the discovery of novel diagnostic target proteins. However, the lack of standardized and accurate protocols for PMP isolation limits the implementation of PMP as biomarkers in clinical settings. Here, we describe in detail a robust protocol for PMP isolation from human blood plasma via ultracentrifugation followed by label-free quantitative proteome analysis of PMP.

Key words

Plasma microparticles Ultracentrifugation Label-free proteome quantification Plasma microparticle proteome Blood-based biomarker 

References

  1. 1.
    Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057. https://doi.org/10.1161/CIRCRESAHA.110.226456Google Scholar
  2. 2.
    Inal JM, Kosgodage U, Azam S et al (2013) Blood/plasma secretome and microvesicles. Biochim Biophys Acta 1834(11):2317–2325. https://doi.org/10.1016/j.bbapap.2013.04.005Google Scholar
  3. 3.
    Morel O, Jesel L, Freyssinet JM et al (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26. https://doi.org/10.1161/ATVBAHA.109.200956Google Scholar
  4. 4.
    Lynch SF, Ludlam CA (2007) Plasma microparticles and vascular disorders. Br J Haematol 137(1):36–48. https://doi.org/10.1111/j.1365-2141.2007.06514.xGoogle Scholar
  5. 5.
    Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33. https://doi.org/10.1161/ATVBAHA.110.218123Google Scholar
  6. 6.
    Burger D, Schock S, Thompson CS et al (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124(7):423–441. https://doi.org/10.1042/CS20120309Google Scholar
  7. 7.
    Yuana Y, Bertina RM, Osanto S (2011) Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost 105(3):396–408. https://doi.org/10.1160/TH10-09-0595Google Scholar
  8. 8.
    Robert S, Poncelet P, Lacroix R et al (2009) Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 7(1):190–197. https://doi.org/10.1111/j.1538-7836.2008.03200.xGoogle Scholar
  9. 9.
    Ueba T, Haze T, Sugiyama M et al (2008) Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome. Thromb Haemost 100(2):280–285. https://doi.org/10.1160/TH07-11-0668Google Scholar
  10. 10.
    Smalley DM, Root KE, Cho H et al (2007) Proteomic discovery of 21 proteins expressed in human plasma-derived but not platelet-derived microparticles. Thromb Haemost 97(1):67–80. https://doi.org/10.1160/TH06-02-0066Google Scholar
  11. 11.
    Aras O, Shet A, Bach RR et al (2004) Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 103(12):4545–4553. https://doi.org/10.1182/blood-2003-03-0713Google Scholar
  12. 12.
    Tesselaar ME, Romijn FP, Van Der Linden IK et al (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5(3):520–527. https://doi.org/10.1111/j.1538-7836.2007.02369.xGoogle Scholar
  13. 13.
    Yuana Y, Oosterkamp TH, Bahatyrova S et al (2010) Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost 8(2):315–323. https://doi.org/10.1111/j.1538-7836.2009.03654.xGoogle Scholar
  14. 14.
    Miguet L, Pacaud K, Felden C et al (2006) Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics 6(1):153–171. https://doi.org/10.1002/pmic.200500133Google Scholar
  15. 15.
    Jin M, Drwal G, Bourgeois T et al (2005) Distinct proteome features of plasma microparticles. Proteomics 5(7):1940–1952. https://doi.org/10.1002/pmic.200401057Google Scholar
  16. 16.
    Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7(16):3010–3029. https://doi.org/10.1002/pmic.200700139Google Scholar
  17. 17.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211Google Scholar
  18. 18.
    Kim DK, Lee J, Kim SR et al (2015) EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31(6):933–939. https://doi.org/10.1093/bioinformatics/btu741Google Scholar
  19. 19.
    Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114. https://doi.org/10.2307/3001913Google Scholar
  20. 20.
    Taleb RSZ, Moez P, Younan D et al (2017) Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma. Proteomics Clin Appl 11(11-12). https://doi.org/10.1002/prca.201700014

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Raghda Saad Zaghloul Taleb
    • 1
    • 2
  • Pacint Moez
    • 2
  • Doreen Younan
    • 2
  • Martin Eisenacher
    • 1
  • Matthias Tenbusch
    • 3
  • Barbara Sitek
    • 1
  • Thilo Bracht
    • 1
    Email author
  1. 1.Medizinisches Proteom-Center, Ruhr-Universität BochumBochumGermany
  2. 2.Clinical and Chemical Pathology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
  3. 3.Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations