Skip to main content

Computation and Selection of Optimal Biomarker Combinations by Integrative ROC Analysis Using CombiROC

Part of the Methods in Molecular Biology book series (MIMB,volume 1959)

Abstract

The diagnostic accuracy of biomarker-based approaches can be considerably improved by combining multiple markers. A biomarker’s capacity to identify specific subjects is usually assessed using receiver operating characteristic (ROC) curves. Multimarker signatures are complicated to select as data signatures must be integrated using sophisticated statistical methods. CombiROC, developed as a user-friendly web tool, helps researchers to accurately determine optimal combinations of markers identified by a range of omics methods. With CombiROC, data of different types, such as proteomics and transcriptomics, can be analyzed using Sensitivity/Specificity filters: the number of candidate marker panels arising from combinatorial analysis is easily optimized bypassing limitations imposed by the nature of different experimental approaches. Users have full control over initial selection stringency, then CombiROC computes sensitivity and specificity for all marker combinations, determines performance for the best combinations, and produces ROC curves for automatic comparisons. All steps can be visualized in a graphic interface. CombiROC is designed without hard-coded thresholds, to allow customized fitting of each specific dataset: this approach dramatically reduces computational burden and false-negative rates compared to fixed thresholds. CombiROC can be accessed at www.combiroc.eu.

Key words

  • Biomarker
  • Protein
  • miRNA
  • ROC curve
  • Statistical analysis
  • Combinatorial analysis
  • Multimarker signatures

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9164-8_16
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9164-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pfaffl MW (2013) Transcriptional biomarkers. Methods 59(1):1–2. https://doi.org/10.1016/j.ymeth.2012.12.011

    CAS  CrossRef  PubMed  Google Scholar 

  2. Janvilisri T, Suzuki H, Scaria J et al (2015) High-throughput screening for biomarker discovery. Dis Markers 2015:108064. https://doi.org/10.1155/2015/108064

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7(7):545–553. https://doi.org/10.1038/nrc2173

    CAS  CrossRef  PubMed  Google Scholar 

  4. Hainard A, Tiberti N, Robin X et al (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3(6):e459. https://doi.org/10.1371/journal.pntd.0000459

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Turck N, Vutskits L, Sanchez-Pena P et al (2010) A multiparameter panel method for outcome prediction following aneurysmal subarachnoid hemorrhage. Intensive Care Med 36(1):107–115. https://doi.org/10.1007/s00134-009-1641-y

    CrossRef  PubMed  Google Scholar 

  6. Fung KYC, Tabor B, Buckley MJ et al (2015) Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS One 10(3):e0120425. https://doi.org/10.1371/journal.pone.0120425

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Li J, Zhang Z, Rosenzweig J et al (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48(8):1296–1304

    CAS  PubMed  Google Scholar 

  8. Bombois S, Duhamel A, Salleron J et al (2013) A new decision tree combining Abeta 1-42 and p-Tau levels in Alzheimer’s diagnosis. Curr Alzheimer Res 10(4):357–364. https://doi.org/10.2174/1567205011310040002

    CAS  CrossRef  PubMed  Google Scholar 

  9. Zhang F, Deng Y, Drabier R (2013) Multiple biomarker panels for early detection of breast cancer in peripheral blood. Biomed Res Int 2013:781618. https://doi.org/10.1155/2013/781618

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Buyse M, Michiels S, Sargent DJ et al (2011) Integrating biomarkers in clinical trials. Expert Rev Mol Diagn 11(2):171–182. https://doi.org/10.1586/erm.10.120

    CrossRef  PubMed  Google Scholar 

  11. de Gramont A, Watson S, Ellis LM et al (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol 12(4):197–212. https://doi.org/10.1038/nrclinonc.2014.202

    CrossRef  PubMed  Google Scholar 

  12. Kramar A, Faraggi D, Fortuné A et al (2001) mROC: a computer program for combining tumour markers in predicting disease states. Comput Methods Prog Biomed 66(2–3):199–207. https://doi.org/10.1016/S0169-2607(00)00129-2

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauro Bombaci or Riccardo L. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Bombaci, M., Rossi, R.L. (2019). Computation and Selection of Optimal Biomarker Combinations by Integrative ROC Analysis Using CombiROC. In: Brun, V., Couté, Y. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1959. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9164-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9164-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9163-1

  • Online ISBN: 978-1-4939-9164-8

  • eBook Packages: Springer Protocols