Advertisement

Beta-Arrestins pp 195-215 | Cite as

Workflow Description to Dynamically Model β-Arrestin Signaling Networks

  • Romain YvinecEmail author
  • Mohammed Akli Ayoub
  • Francesco De Pascali
  • Pascale Crépieux
  • Eric Reiter
  • Anne Poupon
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1957)

Abstract

Dynamic models of signaling networks allow the formulation of hypotheses on the topology and kinetic rate laws characterizing a given molecular network, in-depth exploration, and confrontation with kinetic biological data. Despite its standardization, dynamic modeling of signaling networks still requires successive technical steps that need to be carefully performed. Here, we detail these steps by going through the mathematical and statistical framework. We explain how it can be applied to the understanding of β-arrestin-dependent signaling networks. We illustrate our methodology through the modeling of β-arrestin recruitment kinetics at the follicle-stimulating hormone (FSH) receptor supported by in-house bioluminescence resonance energy transfer (BRET) data.

Key words

β-Arrestins Dynamic models Biochemical reaction network Parameter identification Data fitting Model selection 

References

  1. 1.
    Reiter E, Lefkowitz RJ (2006) GRKs and β-Arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165PubMedCrossRefGoogle Scholar
  2. 2.
    DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) β-Arrestins and cell signaling. Annu Rev Physiol 69(1):483–510PubMedCrossRefGoogle Scholar
  3. 3.
    DeFea K (2008) β-Arrestins and Heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br J Pharmacol 153(S1):S298–S309PubMedCrossRefGoogle Scholar
  4. 4.
    Ma L, Pei G (2007) β-Arrestin signaling and regulation of transcription. J Cell Sci 120(2):213–218PubMedCrossRefGoogle Scholar
  5. 5.
    Musnier A, Blanchot B, Reiter E, Crépieux P (2010) GPCR signalling to the translation machinery. Cell Signal 22(5):707–716PubMedCrossRefGoogle Scholar
  6. 6.
    Crépieux P, Poupon A, Langonné-Gallay N, Reiter E, Delgado J, Schaefer MH, Bourquard T, Serrano L, Kiel C (2017) A comprehensive view of the β-Arrestinome. Front Endocrinol 8:32CrossRefGoogle Scholar
  7. 7.
    Lohse MJ, Hofmann KP (2015) Spatial and temporal aspects of signaling by G-protein coupled receptors. Mol Pharmacol 88(3):572–578PubMedCrossRefGoogle Scholar
  8. 8.
    Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P (2017) β-Arrestin Signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 449:28–41PubMedCrossRefGoogle Scholar
  9. 9.
    Kenakin T (2014) Quantifying biased β-Arrestin signaling. Handb Exp Pharmacol 219:57–83PubMedCrossRefGoogle Scholar
  10. 10.
    Evron T, Peterson SM, Urs NM, Bai Y, Rochelle LK, Caron MG, Barak LS (2014) G protein and β-Arrestin signaling bias at the ghrelin receptor. J Biol Chem 289(48):33442–33455PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Flavie L, Gallay N, Jégot G, Tranchant T, Durand G, Bourquard T, Crépieux P, Poupon A, Reiter E (2013) Biased signalling in follicle stimulating hormone action. Mol Cell Endocrinol 382(1):452–459Google Scholar
  12. 12.
    Ayoub MA, Yvinec R, Jégot G, Dias JA, Poli SM, Poupon A, Crépieux P, Reiter E (2016) Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in Steroidogenesis. Mol Cell Endocrinol 436:10–22PubMedCrossRefGoogle Scholar
  13. 13.
    Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, Simoni M, Casarini L, Ayoub MA (2017) Human luteinizing hormone and chorionic gonadotropin display biased Agonism at the LH and LH/CG receptors. Sci Rep 7(1):940PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of β-Arrestin-biased Agonism at seven-Transmembrane receptors. Annu Rev Pharmacol Toxicol 52(1):179–197PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Linderman JJ (2009) Modeling of G-protein-coupled receptor signaling pathways. J Biol Chem 284(9):5427–5431PubMedCrossRefGoogle Scholar
  16. 16.
    Heitzler D, Crépieux P, Poupon A, Clément F, Fages F, Reiter E (2009) Towards a systems biology approach of G protein-coupled receptor signalling: challenges and expectations. C R Biol 332(11):947–957PubMedCrossRefGoogle Scholar
  17. 17.
    Poupon A, Reiter E (2014) Computational models to decipher cell-signaling pathways. In: Cellular endocrinology in health and disease. Elsevier, Amsterdam, pp 269–284CrossRefGoogle Scholar
  18. 18.
    Ayoub MA, Yvinec R, Crépieux P, Poupon A (2016) Computational modeling approaches in gonadotropin signaling. Theriogenology 86(1):22–31PubMedCrossRefGoogle Scholar
  19. 19.
    Reiter E, Yvinec R, Crépieux P, Poupon A (2016) Coupling of recognition and effect in GPRC signaling computational modelling approaches. In: Encyclopedia of the molecular life sciences. In press, LondonGoogle Scholar
  20. 20.
    Pfleger KDG, Seeber RM, Eidne KA (2006) Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 1(1):337–345PubMedCrossRefGoogle Scholar
  21. 21.
    Kinzer-Ursem T (2013) GPCR models in neuroscience in molecular and diffusion modeling. In: Encyclopedia of computational neuroscience, 1–7. Springer, New YorkGoogle Scholar
  22. 22.
    Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966PubMedCrossRefGoogle Scholar
  23. 23.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex pathway SImulator. Bioinformatics 22(24):3067–3074PubMedCrossRefGoogle Scholar
  24. 24.
    Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H, Vanlier J, Tönsing C, Adlung L, Engesser R, Mader W, Heinemann T, Hasenauer J, Schilling M, Höfer T, Klipp E, Theis F, Klingmüller U, Schöberl B, Timmer J (2015) Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems. Bioinformatics 31(21):3558–3560PubMedCrossRefGoogle Scholar
  25. 25.
    Ayoub MA, Landomiel F, Gallay N, Jégot G, Poupon A, Crépieux P, Reiter E (2015) Front Endocrinol 6:130CrossRefGoogle Scholar
  26. 26.
    Ayoub MA, Zhang Y, Kelly RS, See HB, Johnstone EKB, McCall EA, Williams JH, Kelly DJ, Pfleger KDG (2015) Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS One 10(3):e0119803PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Higham DJ (2008) Modeling and simulating chemical reactions. SIAM Rev 50(2):347–368CrossRefGoogle Scholar
  28. 28.
    Goulet D (2016) Modeling, simulating, and parameter fitting of biochemical kinetic experiments. SIAM Rev 58(2):331–353CrossRefGoogle Scholar
  29. 29.
    Maier C, Loos C, Hasenauer J (2017) Robust parameter estimation for dynamical systems from outlier-corrupted data. Bioinformatics 33(5):718–725PubMedGoogle Scholar
  30. 30.
    Hasenauer J, Jagiella N, Hross S, Theis FJ (2015) Data-driven modelling of biological multi-scale processes. arXiv:1506.06392Google Scholar
  31. 31.
    Gábor A, Banga JR (2015) Robust and efficient parameter estimation in dynamic models of biological systems. BMC Syst Biol 9(1):74PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Egea JA, Henriques D, Cokelaer T, Villaverde AF, MacNamara A, Danciu DP, Banga JR, Saez-Rodriguez J (2014) MEIGO: an open-source software suite based on Metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinformatics 15(1):136PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chis OT, Banga JR, Balsa-Canto E (2011) Structural Identifiability of systems biology models: a critical comparison of methods. PLoS One 6(11):e27755PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Saccomani MP (2013) Structural vs practical Identifiability in system biology. In: IWBBIO, pp 305–313Google Scholar
  35. 35.
    Villaverde AF, Barreiro A, Papachristodoulou A (2016) Structural Identifiability of dynamic systems biology models. PLoS Comput Biol 12(10):e1005153PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical Identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929PubMedCrossRefGoogle Scholar
  37. 37.
    Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D, Hug S, Kreutz C, Harms BD, Theis FJ, Klingmüller U, Timmer J (2013) Lessons learned from quantitative dynamical modeling in systems biology. PLoS One 8(9):e74335PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Raue A, Karlsson J, Saccomani MP, Jirstrand M, Timmer J (2014) Comparison of approaches for parameter Identifiability analysis of biological systems. Bioinformatics 30(10):1440–1448PubMedCrossRefGoogle Scholar
  39. 39.
    Kirk P, Thorne T, Stumpf MPH (2013) Model selection in systems and synthetic biology. Curr Opin Biotechnol 24(4):767–774PubMedCrossRefGoogle Scholar
  40. 40.
    Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25(4):186–192PubMedCrossRefGoogle Scholar
  41. 41.
    Rougny A, Yamamoto Y, Nabeshima H, Bourgne G, Poupon A, Inoue K, Froidevaux C (2015) Completing signaling networks by Abductive reasoning with perturbation experiments. In: ILP (late breaking papers), pp 95–100Google Scholar
  42. 42.
    Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J, Poupon A (2015) Unraveling the molecular architecture of a G protein-coupled receptor/β-Arrestin/Erk module complex. Sci Rep 5:10760PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crépieux P, Poupon A, Reiter E, Marin P, Vandermoere F (2017) Phosphorylation of β-Arrestin2 at Thr383 by MEK underlies β-Arrestin-dependent activation of Erk1/2 by GPCRs. Elife 6:e23777PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pavliotis GA, Stuart AM (2008) Multiscale methods: averaging and homogenization. In: Texts applied in mathematics. Springer, New York, p 53Google Scholar
  45. 45.
    Gillespie DT, Sanft KR, Petzold LR (2011) Legitimacy of the stochastic Michaelis Menten approximation. IET Syst Biol 5(1):58–69PubMedCrossRefGoogle Scholar
  46. 46.
    Horn F (1972) Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch Ration Mech Anal 49(3):172–186CrossRefGoogle Scholar
  47. 47.
    Horn F, Jackson R (1972) General mass action kinetics. Arch Ration Mech Anal 47(2):81–116CrossRefGoogle Scholar
  48. 48.
    Feinberg M (1972) Complex balancing in general kinetic systems. Arch Ration Mech Anal 49(3):187–194CrossRefGoogle Scholar
  49. 49.
    Othmer H (1980) The interaction of structure and dynamics in chemical reaction networks. In: Modelling of chemical reaction systems. Springer-Verlag, New York, pp 1–19Google Scholar
  50. 50.
    Gunawardena J (2003) Chemical reaction network theory for in-silico biologists. Notes available for download at http://jeremygunawardena.com/papers/crnt.pdf
  51. 51.
    Angeli D (2009) A tutorial on chemical reaction network dynamics. Eur J Control 15(3):398–406CrossRefGoogle Scholar
  52. 52.
    Anderson DF, Kurtz TG (2015) Stochastic analysis of biochemical systems. In: Stochastics in biological systems. Springer International Publishing, New York, pp 1–2Google Scholar
  53. 53.
    Carden J, Pantea C, Craciun G, Machiraju R, Mallick P (2016) Mathematical methods for modeling chemical reaction networks. BioRxiv:070326Google Scholar
  54. 54.
    Ellison P, Feinberg M, Ji H Chemical Reaction Network Toolbox. Available for download at http://www.crnt.osu.edu/CRNTWin
  55. 55.
    Donnell P, Banaji M, Marginean A, Pantea C (2014) CoNtRol: an open source framework for the analysis of chemical reaction networks. Bioinformatics 30(11):1633–1634PubMedCrossRefGoogle Scholar
  56. 56.
    Raue A, Kreutz C, Theis FJ, Timmer J (2012) Joining forces of Bayesian and Frequentist methodology: a study for inference in the presence of non-Identifiability. Philos Trans A Math Phys Eng Sci 371(1984):20110544PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Romain Yvinec
    • 1
    Email author
  • Mohammed Akli Ayoub
    • 1
    • 2
  • Francesco De Pascali
    • 1
  • Pascale Crépieux
    • 1
  • Eric Reiter
    • 1
  • Anne Poupon
    • 1
  1. 1.PRC, INRA, CNRS, IFCE, Université de Tours37380 NouzillyFrance
  2. 2.Biology Department, College of ScienceUnited Arab Emirates UniversityPO BOX 15551United Arab Emirates

Personalised recommendations