Advertisement

Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides

  • Ashley S. Brott
  • David Sychantha
  • Anthony J. ClarkeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1954)

Abstract

The polysaccharides that comprise bacterial cell walls are commonly O-acetylated. This modification confers resistance to hydrolases of innate immune systems and/or controls endogenous autolytic activity. Herein, we present protocols for the compositional analysis of bacterial cell wall O-acetylation, and assays for monitoring O-acetyltransferases and O-acetylesterases. The assays are amenable for the development of high-throughput screens in search of inhibitors of the respective enzymes.

Key words

O-Acetylation O-acetyltransferase O-acetylesterase Peptidoglycan Chitooligosaccharides 

Notes

Acknowledgments

Our research on O-acetylesterases and O-acetyltransferases has been supported by operating grants from the Canadian Institutes for Health Research, and more recently, the Canadian Glycomics Network, a National Centre of Excellence.

References

  1. 1.
    Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12CrossRefGoogle Scholar
  2. 2.
    Moynihan PJ, Sychantha D, Clarke AJ (2014) Chemical biology of peptidoglycan acetylation and deacetylation. Chemistry 54:44–50Google Scholar
  3. 3.
    Forsberg LS, Abshire TG, Friedlander A et al (2012) Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from a virulent B. anthracis CDC 684. Glycobiology 22:1103–1117CrossRefGoogle Scholar
  4. 4.
    Spiers AJ, Bohannon J, Gehrig SM et al (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50:15–27CrossRefGoogle Scholar
  5. 5.
    Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175:5057–5065CrossRefGoogle Scholar
  6. 6.
    Clarke AJ (1993) Compositional analysis of peptidoglycan by high-performance anion-exchange chromatography. Anal Biochem 212:344–350CrossRefGoogle Scholar
  7. 7.
    Weadge JT, Clarke AJ (2006) Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae. Biochemistry 45:839–851CrossRefGoogle Scholar
  8. 8.
    Moynihan PJ, Clarke AJ (2010) O-acetylation of peptidoglycan in gram-negative bacteria: identification and characterization of peptidoglycan O-acetyltransferase in Neisseria gonorrhoeae. J Biol Chem 285:13264–13273CrossRefGoogle Scholar
  9. 9.
    Moynihan PJ, Clarke AJ (2013) Assay for peptidoglycan O-acetyltransferase: a potential new antibacterial target. Anal Biochem 439:73–79CrossRefGoogle Scholar
  10. 10.
    Moynihan PJ, Clarke AJ (2014) Substrate specificity and kinetic characterization of peptidoglycan O-acetyltransferase B from Neisseria gonorrhoeae. J Biol Chem 289:16748–16760CrossRefGoogle Scholar
  11. 11.
    Moynihan PJ, Clarke AJ (2014) The mechanism of peptidoglycan O-acetyltransferase involves an Asp-His-Ser catalytic triad. Biochemistry 53:6243–6251CrossRefGoogle Scholar
  12. 12.
    Sychantha D, Jones C, Little DJ et al (2017) Structure and molecular basis of catalysis of the peptidoglycan O-acetyltransferase A (OatA) catalytic domain. PLoS Pathog 13:e1006667CrossRefGoogle Scholar
  13. 13.
    Sychantha D, Little DJ, Chapman RN et al (2017) Structural and mechanistic basis for the O-acetylation of SCWP, an essential activity for the proper assembly of cell walls in the Bacillus cereus group of pathogens. Nat Chem Biol 14:79–85CrossRefGoogle Scholar
  14. 14.
    Baker P, Ricer T, Moynihan PJ et al (2014) P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Path 10:e1004334CrossRefGoogle Scholar
  15. 15.
    Maranha A, Moynihan PJ, Miranda V et al (2015) Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci Rep 5:13610CrossRefGoogle Scholar
  16. 16.
    Seepersaud R, Sychantha D, Bensing BA et al (2017) O-acetylation of the serine rich repeat glycoprotein GspB is coordinated with accessory Sec transport. PLoS Path 13:e1006558CrossRefGoogle Scholar
  17. 17.
    Urbanowicz BR, Peña MJ, Moniz HA et al (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J 80:197–206CrossRefGoogle Scholar
  18. 18.
    Baumann AM, Bakkers MJ, Buettner FF et al (2015) 9-O-acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nat Commun 6:7673CrossRefGoogle Scholar
  19. 19.
    Rogers HJ, Perkins HR (1959) Cell-wall mucopeptides of Staphylococcus aureus and Micrococcus lysodeikticus. Nature 184:520–524CrossRefGoogle Scholar
  20. 20.
    Strominger JL, Park JT, Thompson RE (1959) Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem 234:3263–3268PubMedGoogle Scholar
  21. 21.
    Ghuysen J-M, Strominger JL (1963) Structure of the cell wall of Staphylococcus aureus strain Copenhagen. II. Separation and structure of disaccharides. Biochemistry 2:1119–11125CrossRefGoogle Scholar
  22. 22.
    Bernard E, Rolain T, Courtin P et al (2011) Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 286:23950–23958CrossRefGoogle Scholar
  23. 23.
    Scheurwater EM, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40:586–591CrossRefGoogle Scholar
  24. 24.
    Clarke AJ, Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38:85–91CrossRefGoogle Scholar
  25. 25.
    Bera A, Herbert S, Jakob A et al (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787CrossRefGoogle Scholar
  26. 26.
    Hoyle BD, Beveridge TJ (1984) Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol 30:204–211CrossRefGoogle Scholar
  27. 27.
    Pfeffer JM, Strating H, Weadge JT et al (2006) Peptidoglycan O-acetylation and autolysin profile of Enterococcus faecalis in the viable but non-culturable state. J Bacteriol 188:902–908CrossRefGoogle Scholar
  28. 28.
    Rusconi F, Valton E, Nguyen R et al (2001) Quantification of sodium dodecyl sulfate in microliter-volume biochemical samples by visible light spectroscopy. Anal Biochem 295:31–37CrossRefGoogle Scholar
  29. 29.
    Helassa N, Vollmer W, Breukink E et al (2012) The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J 279:2071–2081CrossRefGoogle Scholar
  30. 30.
    Di Guilmi AM, Dessen A, Dideberg O et al (2003) The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. J Bacteriol 185:4418–4423CrossRefGoogle Scholar
  31. 31.
    Qiao Y, Srisuknimit V, Rubino F et al (2017) Lipid II overproduction allows direct assay of transpeptidase inhibition by ß-lactams. Nat Chem Biol 13:793–798CrossRefGoogle Scholar
  32. 32.
    Abdullah MR, Gutiérrez-Fernández J, Pribyl T et al (2014) Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol Microbiol 93:1183–1206PubMedGoogle Scholar
  33. 33.
    Pfeffer JM, Clarke AJ (2012) Identification of first-known inhibitors of O-acetylpeptidoglycan esterase: a potential new antibacterial target. Chembiochem 13:722–731CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ashley S. Brott
    • 1
  • David Sychantha
    • 1
  • Anthony J. Clarke
    • 1
    Email author
  1. 1.Department of Molecular and Cellular BiologyUniversity of GuelphGuelphCanada

Personalised recommendations