Lymphoma pp 105-125 | Cite as

Expression Cloning of Antibodies from Single Human B Cells

  • Hedda WardemannEmail author
  • Christian E. Busse
Part of the Methods in Molecular Biology book series (MIMB, volume 1956)


The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in chronic lymphocytic leukemia have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire at single-cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow-cytometric isolation of single human B cells to the reverse transcription-polymerase chain reaction (RT-PCR)-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.

Key words

Antibody Immunoglobulin Single-cell RT-PCR 


  1. 1.
    Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581CrossRefGoogle Scholar
  2. 2.
    Wardemann H, Nussenzweig MC (2007) B-cell self-tolerance in humans. Adv Immunol 95:83–110CrossRefGoogle Scholar
  3. 3.
    Goodnow CC, Cyster JG, Hartley SB et al (1995) Self-tolerance checkpoints in B lymphocyte development. Adv Immunol 59:279–368CrossRefGoogle Scholar
  4. 4.
    Wardemann H, Yurasov S, Schaefer A et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377CrossRefGoogle Scholar
  5. 5.
    Tiller T, Tsuiji M, Yurasov S et al (2007) Autoreactivity in human IgG+ memory B cells. Immunity 26:205–213CrossRefGoogle Scholar
  6. 6.
    Berek C, Milstein C (1988) The dynamic nature of the antibody repertoire. Immunol Rev 105:5–26CrossRefGoogle Scholar
  7. 7.
    Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8:22–33CrossRefGoogle Scholar
  8. 8.
    Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563CrossRefGoogle Scholar
  9. 9.
    Rui L, Schmitz R, Ceribelli M et al (2011) Malignant pirates of the immune system. Nat Immunol 12:933–940CrossRefGoogle Scholar
  10. 10.
    Küppers R, Klein U, Hansmann ML et al (1999) Cellular origin of human B-cell lymphomas. N Engl J Med 341:1520–1529CrossRefGoogle Scholar
  11. 11.
    Küppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5:251–262CrossRefGoogle Scholar
  12. 12.
    Zenz T, Mertens D, Küppers R et al (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 10:37–50CrossRefGoogle Scholar
  13. 13.
    Agathangelidis A, Hadzidimitriou A, Rosenquist R et al (2011) Unlocking the secrets of immunoglobulin receptors in mantle cell lymphoma: implications for the origin and selection of the malignant cells. Semin Cancer Biol 21:299–307CrossRefGoogle Scholar
  14. 14.
    Messmer BT, Albesiano E, Efremov DG et al (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 200:519–525CrossRefGoogle Scholar
  15. 15.
    Hervé M, Xu K, Ng Y-S et al (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 115:1636–1643CrossRefGoogle Scholar
  16. 16.
    Catera R, Silverman GJ, Hatzi K et al (2008) Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 14:665–674CrossRefGoogle Scholar
  17. 17.
    Hadzidimitriou A, Darzentas N, Murray F et al (2009) Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood 113:403–411CrossRefGoogle Scholar
  18. 18.
    Bahler DW, Levy R (1992) Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci U S A 89:6770–6774CrossRefGoogle Scholar
  19. 19.
    Dühren-von Minden M, Übelhart R, Schneider D et al (2012) Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489:309–312CrossRefGoogle Scholar
  20. 20.
    Minici C, Gounari M, Übelhart R et al (2017) Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat Commun 8:15746CrossRefGoogle Scholar
  21. 21.
    Breden F, Luning Prak ET, Peters B et al (2017) Reproducibility and reuse of adaptive immune receptor repertoire data. Front Immunol 8:1418CrossRefGoogle Scholar
  22. 22.
    Rubelt F, Busse CE, Bukhari SAC et al (2017) Adaptive immune receptor repertoire community recommendations for sharing immune-repertoire sequencing data. Nat Immunol 18:1274–1278CrossRefGoogle Scholar
  23. 23.
    Wardemann H, Busse CE (2017) Novel approaches to analyze immunoglobulin repertoires. Trends Immunol 38:471–482CrossRefGoogle Scholar
  24. 24.
    Steinitz M, Klein G, Koskimies S et al (1977) EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269:420–422CrossRefGoogle Scholar
  25. 25.
    Lanzavecchia A, Corti D, Sallusto F (2007) Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol 18:523–528CrossRefGoogle Scholar
  26. 26.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497CrossRefGoogle Scholar
  27. 27.
    McCafferty J, Griffiths AD, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554CrossRefGoogle Scholar
  28. 28.
    Tiller T, Meffre E, Yurasov S et al (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329:112–124CrossRefGoogle Scholar
  29. 29.
    Benckert J, Schmolka N, Kreschel C et al (2011) The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest 121:1946–1955CrossRefGoogle Scholar
  30. 30.
    Binder M, Müller F, Jackst A et al (2011) B-cell receptor epitope recognition correlates with the clinical course of chronic lymphocytic leukemia. Cancer 117:1891–1900CrossRefGoogle Scholar
  31. 31.
    Tiller T, Busse CE, Wardemann H (2009) Cloning and expression of murine Ig genes from single B cells. J Immunol Methods 350:183–193CrossRefGoogle Scholar
  32. 32.
    Gu H, Rajewsky K (eds) (2004) B cell protocols. Humana Press, New YorkGoogle Scholar
  33. 33.
    Scheid JF, Mouquet H, Feldhahn N et al (2009) A method for identification of HIV gp140 binding memory B cells in human blood. J Immunol Methods 343:65–67CrossRefGoogle Scholar
  34. 34.
    Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313:199–208CrossRefGoogle Scholar
  35. 35.
    Busse CE, Czogiel I, Braun P et al (2014) Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur J Immunol 44:597–603CrossRefGoogle Scholar
  36. 36.
    Murugan R, Imkeller K, Busse CE et al (2015) Direct high-throughput amplification and sequencing of immunoglobulin genes from single human B cells. Eur J Immunol 45:2698–2700CrossRefGoogle Scholar
  37. 37.
    Tsuiji M, Yurasov S, Velinzon K et al (2006) A checkpoint for autoreactivity in human IgM+ memory B cell development. J Exp Med 203:393–400CrossRefGoogle Scholar
  38. 38.
    Ye J, Ma N, Madden TL et al (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41:34–40CrossRefGoogle Scholar
  39. 39.
    Smilevska T, Tsakou E, Hadzidimitriou A et al (2008) Immunoglobulin kappa gene repertoire and somatic hypermutation patterns in follicular lymphoma. Blood Cells Mol Dis 41:215–218CrossRefGoogle Scholar
  40. 40.
    Fais F, Ghiotto F, Hashimoto S et al (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102:1515–1525CrossRefGoogle Scholar
  41. 41.
    Thompsett AR, Ellison DW, Stevenson FK et al (1999) VH gene sequences from primary central nervous system lymphomas indicate derivation from highly mutated germinal center B cells with ongoing mutational activity. Blood 94:1738–1746PubMedGoogle Scholar
  42. 42.
    Montesinos-Rongen M, Küppers R, Schlüter D et al (1999) Primary central nervous system lymphomas are derived from germinal-center B cells and show a preferential usage of the V4-34 gene segment. Am J Pathol 155:2077–2086CrossRefGoogle Scholar
  43. 43.
    Stamatopoulos K, Kosmas C, Papadaki T et al (1997) Follicular lymphoma immunoglobulin κ light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br J Haematol 96:132–146CrossRefGoogle Scholar
  44. 44.
    Noppe SM, Heirman C, Bakkus MH et al (1999) The genetic variability of the VH genes in follicular lymphoma: the impact of the hypermutation mechanism. Br J Haematol 107:625–640CrossRefGoogle Scholar
  45. 45.
    Aarts WM, Bende RJ, Steenbergen EJ et al (2000) Variable heavy chain gene analysis of follicular lymphomas: correlation between heavy chain isotype expression and somatic mutation load. Blood 95:2922–2929PubMedGoogle Scholar
  46. 46.
    Kabat EA, Wu TT (1991) Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147:1709–1719PubMedGoogle Scholar
  47. 47.
    Imkeller K, Arndt PF, Wardemann H et al (2016) sciReptor: analysis of single-cell level immunoglobulin repertoires. BMC Bioinformatics 17:67CrossRefGoogle Scholar
  48. 48.
    Hummel M, Tamaru J, Kalvelage B et al (1994) Mantle cell (previously centrocytic) lymphomas express VH genes with no or very little somatic mutations like the physiologic cells of the follicle mantle. Blood 84:403–407PubMedGoogle Scholar
  49. 49.
    Klein U, Goossens T, Fischer M et al (1998) Somatic hypermutation in normal and transformed human B cells. Immunol Rev 162:261–280CrossRefGoogle Scholar
  50. 50.
    Lorin V, Mouquet H (2015) Efficient generation of human IgA monoclonal antibodies. J Immunol Methods 422:102–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of B-Cell ImmunologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations