Advertisement

Lymphoma pp 35-60 | Cite as

Flow Cytometry for Non-Hodgkin and Hodgkin Lymphomas

  • Emily Glynn
  • Lori Soma
  • David Wu
  • Brent L. Wood
  • Jonathan R. FrommEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1956)

Abstract

Multiparametric flow cytometry is a powerful diagnostic tool that permits rapid assessment of cellular antigen expression to quickly provide immunophenotypic information suitable for disease classification. This chapter describes a general approach for the identification of abnormal lymphoid populations by flow cytometry, including B, T, NK, and Hodgkin lymphoma cells suitable for the clinical and research environment. Knowledge of the common patterns of antigen expression of normal lymphoid cells is critical to permit identification of abnormal populations at disease presentation and for minimal residual disease assessment. We highlight an overview of procedures for processing and immunophenotyping non-Hodgkin B- and T-cell lymphomas and also describe our strategy for the sensitive and specific diagnosis of classical Hodgkin lymphoma and nodular lymphocyte predominant Hodgkin lymphoma.

Key words

B cells B-cell lymphoma Clonality Flow cytometry Hodgkin lymphoma Light-chain restriction T cells T-cell lymphoma T-cell receptor V-beta repertoire analysis 

Notes

Acknowledgments

The authors thank the medical technologists in the hematopathology laboratory at the University of Washington for their expert technical assistance.

References

  1. 1.
    Jaffe ES, Campo E, Harris NL, Pileri SA, Stein H, Swerdlow SH (2017) Introduction and overview of the classification of lymphoid neoplasms. In: Swerdlow SH, Campos E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumors. IARC Press, Lyon, France, pp 190–198Google Scholar
  2. 2.
    Craig FE, Foon KA (2008) Flow cytometric immunophenotyping for hematologic neoplasms. Blood 111(8):3941–3967.  https://doi.org/10.1182/blood-2007-11-120535PubMedGoogle Scholar
  3. 3.
    Wood BL, Borowitz MJ (2017) The flow cytometric evaluation of hematopoietic neoplasia. In: RA MP, Pincus MR (eds) Henry’s clinical diagnosis and management by laboratory methods. Elsevier, St. Louis, Missouri, pp 659–679Google Scholar
  4. 4.
    Givan AL (2011) Flow cytometry: an introduction. Methods Mol Biol 699:1–29.  https://doi.org/10.1007/978-1-61737-950-5_1PubMedGoogle Scholar
  5. 5.
    Redelman D (2000) Flow cytometric analyses of cell phenotypes. In: Stewart CC, Nicholson, J.K.A. (ed) Immunophenotyping. Wiley-Liss, New York,Google Scholar
  6. 6.
    Keeney M, Hedley BD, Chin-Yee IH (2017) Flow cytometry-recognizing unusual populations in leukemia and lymphoma diagnosis. Int J Lab Hematol 39 Suppl 1:86–92.  https://doi.org/10.1111/ijlh.12666PubMedGoogle Scholar
  7. 7.
    Gorczyca W, Weisberger J, Liu Z, Tsang P, Hossein M, Wu CD, Dong H, Wong JY, Tugulea S, Dee S, Melamed MR, Darzynkiewicz Z (2002) An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry 50(3):177–190.  https://doi.org/10.1002/cyto.10003PubMedGoogle Scholar
  8. 8.
    Jamal S, Picker LJ, Aquino DB, McKenna RW, Dawson DB, Kroft SH (2001) Immunophenotypic analysis of peripheral T-cell neoplasms. A multiparameter flow cytometric approach. Am J Clin Pathol 116(4):512–526.  https://doi.org/10.1309/QF6N-VAQW-N74H-4JE2PubMedGoogle Scholar
  9. 9.
    Beck RC, Stahl S, O’Keefe CL, Maciejewski JP, Theil KS, Hsi ED (2003) Detection of mature T-cell leukemias by flow cytometry using anti-T-cell receptor V beta antibodies. Am J Clin Pathol 120(5):785–794.  https://doi.org/10.1309/835B-04QX-GNNF-NRJUPubMedGoogle Scholar
  10. 10.
    Langerak AW, van Den Beemd R, Wolvers-Tettero IL, Boor PP, van Lochem EG, Hooijkaas H, van Dongen JJ (2001) Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalphabeta T-cell proliferations. Blood 98(1):165–173PubMedGoogle Scholar
  11. 11.
    Morice WG, Kimlinger T, Katzmann JA, Lust JA, Heimgartner PJ, Halling KC, Hanson CA (2004) Flow cytometric assessment of TCR-Vbeta expression in the evaluation of peripheral blood involvement by T-cell lymphoproliferative disorders: a comparison with conventional T-cell immunophenotyping and molecular genetic techniques. Am J Clin Pathol 121(3):373–383.  https://doi.org/10.1309/3A32-DTVM-H640-M2QAPubMedGoogle Scholar
  12. 12.
    Tembhare P, Yuan CM, Xi L, Morris JC, Liewehr D, Venzon D, Janik JE, Raffeld M, Stetler-Stevenson M (2011) Flow cytometric immunophenotypic assessment of T-cell clonality by Vbeta repertoire analysis: detection of T-cell clonality at diagnosis and monitoring of minimal residual disease following therapy. Am J Clin Pathol 135(6):890–900.  https://doi.org/10.1309/AJCPV2D1DDSGJDBWPubMedGoogle Scholar
  13. 13.
    Gibson JF, Huang J, Liu KJ, Carlson KR, Foss F, Choi J, Edelson R, Hussong JW, Mohl R, Hill S, Girardi M (2016) Cutaneous T-cell lymphoma (CTCL): current practices in blood assessment and the utility of T-cell receptor (TCR)-Vbeta chain restriction. J Am Acad Dermatol 74(5):870–877.  https://doi.org/10.1016/j.jaad.2015.12.018PubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu D, Anderson MM, Othus M, Wood BL (2016) Clinical experience with modified, single-tube T-cell receptor Vbeta flow cytometry analysis for T-cell clonality. Am J Clin Pathol 145(4):467–485.  https://doi.org/10.1093/ajcp/aqw015PubMedGoogle Scholar
  15. 15.
    Karube K, Aoki R, Nomura Y, Yamamoto K, Shimizu K, Yoshida S, Komatani H, Sugita Y, Ohshima K (2008) Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases. Pathol Int 58(2):89–97.  https://doi.org/10.1111/j.1440-1827.2007.02195.xPubMedGoogle Scholar
  16. 16.
    de Mel S, Li JB, Abid MB, Tang T, Tay HM, Ting WC, Poon LM, Chung TH, Mow B, Tso A, Ong KH, Chng WJ, Liu TC (2018) The utility of flow cytometry in differentiating NK/T cell lymphoma from indolent and reactive NK cell proliferations. Cytometry B Clin Cytom 94(1):159–168.  https://doi.org/10.1002/cyto.b.21529PubMedGoogle Scholar
  17. 17.
    Chan WC (2001) The Reed-Sternberg cell in classical Hodgkin’s disease. Hematol Oncol 19(1):1–17PubMedGoogle Scholar
  18. 18.
    Stein H, Hummel M (1999) Cellular origin and clonality of classic Hodgkin’s lymphoma: immunophenotypic and molecular studies. Semin Hematol 36(3):233–241PubMedGoogle Scholar
  19. 19.
    Marafioti T, Hummel M, Foss HD, Laumen H, Korbjuhn P, Anagnostopoulos I, Lammert H, Demel G, Theil J, Wirth T, Stein H (2000) Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 95(4):1443–1450PubMedGoogle Scholar
  20. 20.
    Stein H (1999) Diagnosis of Hodgkin’s disease, Hodgkin’s like anaplastic large cell lymphoma, and T cell/histiocyte-rich B cell lymphoma. In: Mason DY, Harris NL (eds) Human lymphoma: clinical implications of the REAL classification, vol 52. Springer, London, pp 0–4Google Scholar
  21. 21.
    Stein H, Pileri SA, Weiss LM, Poppema S, Gascoyne RD, Jaffe ES (2017) Hodgkin lymphomas: introduction. In: Swerdlow SH, Campos E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumors. IARC Press, Lyon, France, pp 424–430Google Scholar
  22. 22.
    Dorreen MS, Habeshaw JA, Stansfeld AG, Wrigley PF, Lister TA (1984) Characteristics of Sternberg-Reed, and related cells in Hodgkin’s disease: an immunohistological study. Br J Cancer 49(4):465–476PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kadin ME, Newcom SR, Gold SB, Stites DP (1974) Letter: origin of Hodgkin’s cell. Lancet 2(7873):167–168PubMedGoogle Scholar
  24. 24.
    Payne SV, Jones DB, Wright DH (1977) Reed-Sternberg-cell/lymphocyte interaction. Lancet 2(8041):768–769PubMedGoogle Scholar
  25. 25.
    Payne SV, Newell DG, Jones DB, Wright DH (1980) The Reed-Sternberg cell/lymphocyte interaction: ultrastructure and characteristics of binding. Am J Pathol 100(1):7–24PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sanders ME, Makgoba MW, Sussman EH, Luce GE, Cossman J, Shaw S (1988) Molecular pathways of adhesion in spontaneous rosetting of T-lymphocytes to the Hodgkin’s cell line L428. Cancer Res 48(1):37–40PubMedGoogle Scholar
  27. 27.
    Stuart AE, Williams AR, Habeshaw JA (1977) Rosetting and other reactions of the Reed-Sternberg cell. J Pathol 122(2):81–90PubMedGoogle Scholar
  28. 28.
    Fromm JR, Kussick SJ, Wood BL (2006) Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting. Am J Clin Pathol 126(5):764–780.  https://doi.org/10.1309/7371-XK6F-6P74-74XXPubMedGoogle Scholar
  29. 29.
    Harris NL (1999) Hodgkin’s disease: classification and differential diagnosis. Mod Pathol 12(2):159–175PubMedGoogle Scholar
  30. 30.
    Kuppers R, Engert A, Hansmann ML (2012) Hodgkin lymphoma. J Clin Invest 122(10):3439–3447.  https://doi.org/10.1172/JCI61245PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mathas S, Hartmann S, Kuppers R (2016) Hodgkin lymphoma: pathology and biology. Semin Hematol 53(3):139–147.  https://doi.org/10.1053/j.seminhematol.2016.05.007PubMedGoogle Scholar
  32. 32.
    Fromm JR, Thomas A, Wood BL (2009) Flow cytometry can diagnose classical Hodgkin lymphoma in lymph nodes with high sensitivity and specificity. Am J Clin Pathol 131(3):322–332.  https://doi.org/10.1309/AJCPW3UN9DYLDSPBPubMedGoogle Scholar
  33. 33.
    Fromm JR, Wood BL (2012) Strategies for immunophenotyping and purifying classical Hodgkin lymphoma cells from lymph nodes by flow cytometry and flow cytometric cell sorting. Methods 57(3):368–375.  https://doi.org/10.1016/j.ymeth.2012.03.028PubMedGoogle Scholar
  34. 34.
    Fromm JR, Wood BL (2014) A six-color flow cytometry assay for immunophenotyping classical Hodgkin lymphoma in lymph nodes. Am J Clin Pathol 141(3):388–396.  https://doi.org/10.1309/AJCP0Q1SVOXBHMAMPubMedGoogle Scholar
  35. 35.
    Cherian S, Fromm JR (2018) Evaluation of primary mediastinal large B cell lymphoma by flow cytometry. Cytometry B Clin Cytom 94(3):459–467.  https://doi.org/10.1002/cyto.b.21544PubMedGoogle Scholar
  36. 36.
    Schmitz R, Stanelle J, Hansmann ML, Kuppers R (2009) Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol 4:151–174.  https://doi.org/10.1146/annurev.pathol.4.110807.092209PubMedGoogle Scholar
  37. 37.
    Stein H, Swerdlow SH, Gascoyne RD, Poppema S, Jaffe ES, Pileri SA (2017) Nodular lymphocyte predominant Hodgkin lymphoma. In: Swerdlow SH, Campos E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, France, pp 431–434Google Scholar
  38. 38.
    Uherova P, Valdez R, Ross CW, Schnitzer B, Finn WG (2003) Nodular lymphocyte predominant Hodgkin lymphoma. An immunophenotypic reappraisal based on a single-institution experience. Am J Clin Pathol 119(2):192–198.  https://doi.org/10.1309/38RK-238F-CDCH-5R22PubMedGoogle Scholar
  39. 39.
    Harris NL (1999) Hodgkin’s lymphomas: classification, diagnosis, and grading. Semin Hematol 36(3):220–232PubMedGoogle Scholar
  40. 40.
    Fromm JR, Thomas A, Wood BL (2017) Characterization and purification of neoplastic cells of nodular lymphocyte predominant Hodgkin lymphoma from lymph nodes by flow cytometry and flow cytometric cell sorting. Am J Pathol 187(2):304–317.  https://doi.org/10.1016/j.ajpath.2016.10.007PubMedGoogle Scholar
  41. 41.
    Carbone A, Gloghini A, Pinto A (1996) CD40: a sensitive marker of Reed-Sternberg cells. Blood 87(11):4918–4919PubMedGoogle Scholar
  42. 42.
    Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P, Zagonel V, Pinto A (1995) Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood 85(3):780–789PubMedGoogle Scholar
  43. 43.
    Schmid C, Sargent C, Isaacson PG (1991) L and H cells of nodular lymphocyte predominant Hodgkin’s disease show immunoglobulin light-chain restriction. Am J Pathol 139(6):1281–1289PubMedPubMedCentralGoogle Scholar
  44. 44.
    Stoler MH, Nichols GE, Symbula M, Weiss LM (1995) Lymphocyte predominance Hodgkin’s disease. Evidence for a kappa light chain-restricted monotypic B-cell neoplasm. Am J Pathol 146(4):812–818PubMedPubMedCentralGoogle Scholar
  45. 45.
    Torlakovic E, Torlakovic G (2002) B-cell markers in lymphocyte predominance Hodgkin disease. Arch Pathol Lab Med 126(7):862–863.  https://doi.org/10.1043/0003-9985(2002)126<0862:BCMILP>2.0.CO;2PubMedGoogle Scholar
  46. 46.
    Gruss HJ, Kadin ME (1996) Pathophysiology of Hodgkin’s disease: functional and molecular aspects. Baillieres Clin Haematol 9(3):417–446PubMedGoogle Scholar
  47. 47.
    Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HT, Beers SA, French RR, Cox KL, Davies AJ, Potter KN, Mockridge CI, Oscier DG, Johnson PW, Cragg MS, Glennie MJ (2011) Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 118(9):2530–2540.  https://doi.org/10.1182/blood-2011-01-330357PubMedGoogle Scholar
  48. 48.
    Seegmiller AC, Karandikar NJ, Kroft SH, McKenna RW, Xu Y (2009) Overexpression of CD7 in classical Hodgkin lymphoma-infiltrating T lymphocytes. Cytometry B Clin Cytom 76(3):169–174.  https://doi.org/10.1002/cyto.b.20459PubMedGoogle Scholar
  49. 49.
    Fromm JR, Thomas A, Wood BL (2010) Increased expression of T cell antigens on T cells in classical Hodgkin lymphoma. Cytometry B Clin Cytom 78(6):387–388.  https://doi.org/10.1002/cyto.b.20535PubMedGoogle Scholar
  50. 50.
    Wu D, Thomas A, Fromm JR (2016) Reactive T cells by flow cytometry distinguish Hodgkin lymphomas from T cell/histiocyte-rich large B cell lymphoma. Cytometry B Clin Cytom 90(5):424–432.  https://doi.org/10.1002/cyto.b.21261PubMedGoogle Scholar
  51. 51.
    Rahemtullah A, Reichard KK, Preffer FI, Harris NL, Hasserjian RP (2006) A double-positive CD4+CD8+ T-cell population is commonly found in nodular lymphocyte predominant Hodgkin lymphoma. Am J Clin Pathol 126(5):805–814.  https://doi.org/10.1309/Y8KD-32QG-RYFN-1XQXPubMedGoogle Scholar
  52. 52.
    Rahemtullah A, Harris NL, Dorn ME, Preffer FI, Hasserjian RP (2008) Beyond the lymphocyte predominant cell: CD4+CD8+ T-cells in nodular lymphocyte predominant Hodgkin lymphoma. Leuk Lymphoma 49(10):1870–1878.  https://doi.org/10.1080/10428190802308728PubMedGoogle Scholar
  53. 53.
    Li S, Eshleman JR, Borowitz MJ (2002) Lack of surface immunoglobulin light chain expression by flow cytometric immunophenotyping can help diagnose peripheral B-cell lymphoma. Am J Clin Pathol 118(2):229–234.  https://doi.org/10.1309/57G0-1BNF-KB9R-L4HNPubMedGoogle Scholar
  54. 54.
    Jaffe ES, Harris NL, Stein H, Campo E, Pileri SA, Swerdlow SH (2008) Introduction and overview of the classification of lymphoid neoplasms. In: Swerdlow SH, Campos E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of Tumors. IARC Press, Lyon, pp 158–166Google Scholar
  55. 55.
    Mantei K, Wood BL (2009) Flow cytometric evaluation of CD38 expression assists in distinguishing follicular hyperplasia from follicular lymphoma. Cytometry B Clin Cytom 76(5):315–320.  https://doi.org/10.1002/cyto.b.20477PubMedGoogle Scholar
  56. 56.
    Yang W, Agrawal N, Patel J, Edinger A, Osei E, Thut D, Powers J, Meyerson H (2005) Diminished expression of CD19 in B-cell lymphomas. Cytometry B Clin Cytom 63(1):28–35.  https://doi.org/10.1002/cyto.b.20030PubMedGoogle Scholar
  57. 57.
    Ray S, Craig FE, Swerdlow SH (2005) Abnormal patterns of antigenic expression in follicular lymphoma: a flow cytometric study. Am J Clin Pathol 124(4):576–583.  https://doi.org/10.1309/2GFKU23XA1DH38L7PubMedGoogle Scholar
  58. 58.
    Kussick SJ, Kalnoski M, Braziel RM, Wood BL (2004) Prominent clonal B-cell populations identified by flow cytometry in histologically reactive lymphoid proliferations. Am J Clin Pathol 121(4):464–472.  https://doi.org/10.1309/4EJ8-T3R2-ERKQ-61WHPubMedGoogle Scholar
  59. 59.
    Chen HI, Akpolat I, Mody DR, Lopez-Terrada D, De Leon AP, Luo Y, Jorgensen J, Schwartz MR, Chang CC (2006) Restricted kappa/lambda light chain ratio by flow cytometry in germinal center B cells in Hashimoto thyroiditis. Am J Clin Pathol 125(1):42–48PubMedGoogle Scholar
  60. 60.
    Hurwitz CA, Raimondi SC, Head D, Krance R, Mirro J Jr, Kalwinsky DK, Ayers GD, Behm FG (1992) Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 80(12):3182–3188PubMedGoogle Scholar
  61. 61.
    Rawstron AC, Green MJ, Kuzmicki A, Kennedy B, Fenton JA, Evans PA, O’Connor SJ, Richards SJ, Morgan GJ, Jack AS, Hillmen P (2002) Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 100(2):635–639PubMedGoogle Scholar
  62. 62.
    Rawstron AC, Shanafelt T, Lanasa MC, Landgren O, Hanson C, Orfao A, Hillmen P, Ghia P (2010) Different biology and clinical outcome according to the absolute numbers of clonal B-cells in monoclonal B-cell lymphocytosis (MBL). Cytometry B Clin Cytom 78(Suppl 1):S19–S23.  https://doi.org/10.1002/cyto.b.20533PubMedGoogle Scholar
  63. 63.
    Strati P, Shanafelt TD (2015) Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood 126(4):454–462.  https://doi.org/10.1182/blood-2015-02-585059PubMedPubMedCentralGoogle Scholar
  64. 64.
    Rodriguez-Caballero A, Garcia-Montero AC, Barcena P, Almeida J, Ruiz-Cabello F, Tabernero MD, Garrido P, Munoz-Criado S, Sandberg Y, Langerak AW, Gonzalez M, Balanzategui A, Orfao A (2008) Expanded cells in monoclonal TCR-alphabeta+/CD4+/NKa+/CD8-/+dim T-LGL lymphocytosis recognize hCMV antigens. Blood 112(12):4609–4616.  https://doi.org/10.1182/blood-2008-03-146241PubMedGoogle Scholar
  65. 65.
    Rahemtullah A, Longtine JA, Harris NL, Dorn M, Zembowicz A, Quintanilla-Fend L, Preffer FI, Ferry JA (2008) CD20+ T-cell lymphoma: clinicopathologic analysis of 9 cases and a review of the literature. Am J Surg Pathol 32(11):1593–1607.  https://doi.org/10.1097/PAS.0b013e31817d7452PubMedGoogle Scholar
  66. 66.
    Rizzo K, Stetler-Stevenson M, Wilson W, Yuan CM (2009) Novel CD19 expression in a peripheral T cell lymphoma: a flow cytometry case report with morphologic correlation. Cytometry B Clin Cytom 76(2):142–149.  https://doi.org/10.1002/cyto.b.20442PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hsu SM, Jaffe ES (1984) Leu M1 and peanut agglutinin stain the neoplastic cells of Hodgkin’s disease. Am J Clin Pathol 82(1):29–32PubMedGoogle Scholar
  68. 68.
    Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, Gatter K, Falini B, Delsol G, Lemke H et al (1985) The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66(4):848–858PubMedGoogle Scholar
  69. 69.
    Stein H, Uchanska-Ziegler B, Gerdes J, Ziegler A, Wernet P (1982) Hodgkin and Sternberg-Reed cells contain antigens specific to late cells of granulopoiesis. Int J Cancer 29(3):283–290PubMedGoogle Scholar
  70. 70.
    Quintanilla-Martinez L, Fend F, Moguel LR, Spilove L, Beaty MW, Kingma DW, Raffeld M, Jaffe ES (1999) Peripheral T-cell lymphoma with Reed-Sternberg-like cells of B-cell phenotype and genotype associated with Epstein-Barr virus infection. Am J Surg Pathol 23(10):1233–1240PubMedGoogle Scholar
  71. 71.
    Mao Z, Quintanilla-Martinez L, Raffeld M, Richter M, Krugmann J, Burek C, Hartmann E, Rudiger T, Jaffe ES, Muller-Hermelink HK, Ott G, Fend F, Rosenwald A (2007) IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am J Surg Pathol 31(10):1605–1614.  https://doi.org/10.1097/PAS.0b013e31804bdaf8PubMedGoogle Scholar
  72. 72.
    Momose H, Jaffe ES, Shin SS, Chen YY, Weiss LM (1992) Chronic lymphocytic leukemia/small lymphocytic lymphoma with Reed-Sternberg-like cells and possible transformation to Hodgkin’s disease. Mediation by Epstein-Barr virus. Am J Surg Pathol 16(9):859–867PubMedGoogle Scholar
  73. 73.
    Ohno T, Smir BN, Weisenburger DD, Gascoyne RD, Hinrichs SD, Chan WC (1998) Origin of the Hodgkin/Reed-Sternberg cells in chronic lymphocytic leukemia with “Hodgkin’s transformation”. Blood 91(5):1757–1761PubMedGoogle Scholar
  74. 74.
    Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, Marce S, Lopez-Guillermo A, Campo E, Montserrat E (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348(18):1764–1775.  https://doi.org/10.1056/NEJMoa023143PubMedGoogle Scholar
  75. 75.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94(6):1840–1847PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emily Glynn
    • 1
  • Lori Soma
    • 1
  • David Wu
    • 1
  • Brent L. Wood
    • 1
  • Jonathan R. Fromm
    • 2
    Email author
  1. 1.Department of Laboratory MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of Laboratory MedicineUniversity of Washington Medical CenterSeattleUSA

Personalised recommendations