Advertisement

Lymphoma pp 305-319 | Cite as

Studying Cancer Heterogeneity by Single-Cell RNA Sequencing

  • Johannes W. Bagnoli
  • Lucas E. Wange
  • Aleksandar Janjic
  • Wolfgang EnardEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1956)

Abstract

A major hurdle for the treatment of cancer is the incomplete understanding of its evolution through the course of its emergence, dispersal, and relapse. Genetic and epigenetic changes in combination with external cues and selective forces are the driving factors behind tumor heterogeneity. Understanding this variability within and across patients may partly explain the unpredictable outcomes of cancer treatments. Measuring the variation of gene expression levels within cells of the same tumor is a crucial part of this endeavor. Hence, the recently developed single-cell RNA-sequencing (scRNA-seq) technologies have become a valuable tool for cancer research. In practice, however, this is still challenging, especially for clinical samples. Here, we describe mcSCRB-seq (molecular crowding single-cell RNA barcoding and sequencing), a highly sensitive and powerful plate-based scRNA-seq method, which shows great capability to generate transcriptome data for cancer cells. mcSCRB-seq is not only characterized by high sensitivity due to molecular crowding and the use of unique molecular identifiers (UMIs) but also features an easy workflow and a low per-cell cost and does not require specialized equipment.

Key words

Single-cell RNA-seq Tumor heterogeneity Transcriptomics mcSCRB-seq Cancer FACS 

References

  1. 1.
    Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313CrossRefGoogle Scholar
  2. 2.
    Maley CC, Aktipis A, Graham TA et al (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17:605–619CrossRefGoogle Scholar
  3. 3.
    Wu C-I, Wang H-Y, Ling S et al (2016) The ecology and evolution of cancer: the ultra-microevolutionary process. Annu Rev Genet 50:347–369CrossRefGoogle Scholar
  4. 4.
    Podlaha O, Riester M, De S et al (2012) Evolution of the cancer genome. Trends Genet 28:155–163CrossRefGoogle Scholar
  5. 5.
    Lipinski KA, Barber LJ, Davies MN et al (2016) Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer Res 2:49–63CrossRefGoogle Scholar
  6. 6.
    McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628CrossRefGoogle Scholar
  7. 7.
    Turajlic S, Xu H, Litchfield K et al (2018) Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173:595–610.e11CrossRefGoogle Scholar
  8. 8.
    Martincorena I, Raine KM, Gerstung M et al (2017) Universal patterns of selection in cancer and somatic tissues. Cell 171:1029–1041.e21CrossRefGoogle Scholar
  9. 9.
    Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541:331–338CrossRefGoogle Scholar
  10. 10.
    Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620CrossRefGoogle Scholar
  11. 11.
    Ziegenhain C, Vieth B, Parekh S et al (2018) Quantitative single-cell transcriptomics. Brief Funct Genomics 17:220–232CrossRefGoogle Scholar
  12. 12.
    Tirosh I, Izar B, Prakadan SM et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196CrossRefGoogle Scholar
  13. 13.
    Ebinger S, Özdemir EZ, Ziegenhain C et al (2016) Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30:849–862CrossRefGoogle Scholar
  14. 14.
    Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14:637–650CrossRefGoogle Scholar
  15. 15.
    Darnell JE Jr (1968) Ribonucleic acids from animal cells. Bacteriol Rev 32:262–290PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4CrossRefGoogle Scholar
  17. 17.
    Parekh S, Ziegenhain C, Vieth B et al (2016) The impact of amplification on differential expression analyses by RNA-seq. Sci Rep 6:25533CrossRefGoogle Scholar
  18. 18.
    Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133–145CrossRefGoogle Scholar
  19. 19.
    Vallejos CA, Risso D, Scialdone A et al (2017) Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods 14:565–571CrossRefGoogle Scholar
  20. 20.
    Bagnoli JW, Ziegenhain C, Janjic A, et al (2018) Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat Commun 9:2937Google Scholar
  21. 21.
    Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214CrossRefGoogle Scholar
  22. 22.
    Zheng GXY, Terry JM, Belgrader P et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049CrossRefGoogle Scholar
  23. 23.
    Parekh S, Ziegenhain C, Vieth B et al (2018) zUMIs – A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience 7Google Scholar
  24. 24.
    R Development Core Team (2008) R: a language and environment for statistical computing. http://www.R-project.org
  25. 25.
    RStudio Team (2015) RStudio: integrated development environment for R. http://www.rstudio.com/
  26. 26.
    Lun ATL, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res 5:2122PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bacher R, Chu L-F, Leng N et al (2017) SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 14:584–586CrossRefGoogle Scholar
  28. 28.
    Thomas MP, Lieberman J (2013) Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 253:237–252CrossRefGoogle Scholar
  29. 29.
    DeAngelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23:4742–4743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Johannes W. Bagnoli
    • 1
  • Lucas E. Wange
    • 1
  • Aleksandar Janjic
    • 1
  • Wolfgang Enard
    • 1
    Email author
  1. 1.Anthropology & Human Genomics, Department of Biology IILudwig-Maximilians-UniversityMartinsriedGermany

Personalised recommendations