Trypanosoma cruzi-Specific T-Cell Responses to Monitor Treatment Efficacy in Chronic Chagas Disease

  • María Cecilia Albareda
  • María Ailén Natale
  • Gonzalo Leandro Cesar
  • Melisa Daiana Castro Eiro
  • María Gabriela Alvarez
  • Susana Adriana Laucella
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)


Chagas disease is the highest impact parasitic disease in Latin America. In recent years, the use of immune-related biomarkers to predict diagnostic and treatment efficacy or to monitor diseases has been considered a promising tool. Our group has worked for the past 20 years on the characterization of different immunological aspects of the T-cell responses to T. cruzi antigens. We have shown that monitoring of appropriate immunological responses can provide earlier and robust measures of treatment.

The Enzyme-Linked ImmunoSPOT (ELISPOT) assays are powerful tools to evaluate antigen-specific immune responses at the single-cell level. Herein, we describe uses of the ELISPOT assay to determine the T. cruzi-specific T-cell populations in PBMCs from chronic chagasic subjects.

Key words

Chagas disease Trypanosoma cruzi Benznidazole ELISPOT T cells 


  1. 1.
    Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343:1388–1398CrossRefGoogle Scholar
  2. 2.
    Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115(1-2):14–21. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosemberg S, Chaves CJ, Higuchi ML et al (1992) Fatal meningoencephalitis caused by reactivation of Trypanosoma cruzi infection in a patient with AIDS. Neurology 42:640–642CrossRefGoogle Scholar
  4. 4.
    Silva N, O’Bryan L, Medeiros E et al (1999) Trypanosoma cruzi meningoencephalitis in HIV-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol 20:342–349CrossRefGoogle Scholar
  5. 5.
    Tarleton RL, Grusby MJ, Postan M et al (1996) Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. Int Immunol 8(1):13–22CrossRefGoogle Scholar
  6. 6.
    Fuenmayor C, Higuchi ML, Carrasco H et al (2005) Acute Chagas’ disease: immunohistochemical characteristics of T cell infiltrate and its relationship with T. cruzi parasitic antigens. Acta Cardiol 60(1):33–37CrossRefGoogle Scholar
  7. 7.
    Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19(4):430–434CrossRefGoogle Scholar
  8. 8.
    Tarleton RL (2003) Chagas disease: a role for autoimmunity? Trends Parasitol 19(10):447–451CrossRefGoogle Scholar
  9. 9.
    Laucella SA, Postan M, Martin D et al (2004) Frequency of interferon- gamma -producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis 189(5):909–918CrossRefGoogle Scholar
  10. 10.
    Albareda MC, Laucella SA, Alvarez MG et al (2006) Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas’ disease patients. Int Immunol 18(3):465–471CrossRefGoogle Scholar
  11. 11.
    Albareda MC, Olivera GC, Laucella SA et al (2009) Chronic human infection with Trypanosoma cruzi drives CD4+ T cells to immune senescence. J Immunol 183(6):4103–4108. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gutierrez FR, Guedes PM, Gazzinelli RT et al (2009) The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol 31(11):673–685. CrossRefPubMedGoogle Scholar
  13. 13.
    Machado FS, Dutra WO, Esper L et al (2012) Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol 34(6):753–770. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Altcheh J, Corral R, Biancardi MA et al (2003) Anti-F2/3 antibodies as cure marker in children with congenital Trypanosoma cruzi infection. Medicina (B Aires) 63(1):37–40Google Scholar
  15. 15.
    Sosa Estani S, Segura EL, Ruiz AM et al (1998) Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am J Trop Med Hyg 59(4):526–529CrossRefGoogle Scholar
  16. 16.
    Sosa-Estani S, Viotti R, Segura EL (2009) Therapy, diagnosis and prognosis of chronic Chagas disease: insight gained in Argentina. Mem Inst Oswaldo Cruz 104(Suppl 1):167–180CrossRefGoogle Scholar
  17. 17.
    Viotti R, Vigliano C, Armenti H et al (1994) Treatment of chronic Chagas disease with benznidazole: clinical and serologic evolution of patients with long-term follow-up. Am Heart J 127:151–162CrossRefGoogle Scholar
  18. 18.
    Fabbro DL, Streiger ML, Arias ED et al (2007) Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina) over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop 40:1–10CrossRefGoogle Scholar
  19. 19.
    Bern C, Montgomery SP, Herwaldt BL et al (2007) Evaluation and treatment of Chagas disease in the United States: a systematic review. JAMA 298:2171–2181CrossRefGoogle Scholar
  20. 20.
    Willis CD, Graham ML (2015) Immune biomarkers: the promises and pitfalls of personalized medicine. Nat Rev Immunol 15:323–329. CrossRefPubMedGoogle Scholar
  21. 21.
    Cooley G, Etheridge RD, Boehlke C et al (2008) High throughput selection of effective serodiagnostics for Trypanosoma cruzi infection. PLoS Negl Trop Dis 2:e316. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Laucella SA, Mazliah DP, Bertocchi G et al (2009) Changes in Trypanosoma cruzi-specific immune responses after treatment: surrogate markers of treatment efficacy. Clin Infect Dis 49:1675–1684. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Viotti R, Vigliano C, Alvarez MG et al (2011) Impact of aetiological treatment on conventional and multiplex serology in chronic Chagas disease. PLoS Negl Trop Dis 5(9):e1314. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Alvarez MG, Bertocchi GL, Cooley G et al (2016) Treatment success in Trypanosoma cruzi infection is predicted by early changes in serially monitored parasite-specific T and B cell responses. PLoS Negl Trop Dis 10(4):e0004657. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Albareda MC, Natale MA, De Rissio AM, et al.(2018) Distinct Treatment Outcomes of Antiparasitic Therapy in Trypanosoma cruzi-Infected Children Is Associated With Early Changes in Cytokines, Chemokines, and T-Cell Phenotypes. Front Immunol 9:1958.
  26. 26.
    Lalvani A, Brookes R, Hambleton S et al (1997) Rapid effector function in CD8+ memory T cells. J Exp Med 186(6):859–865. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alvarez MG, Postan M, Weatherly DB et al (2008) HLA Class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease. PLoS Negl Trop Dis 2(9):e288. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Scheibenbogen C, Romero P, Rivoltini L et al (2000) Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J Immunol Methods 244(1–2):81–89. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Cecilia Albareda
    • 1
  • María Ailén Natale
    • 1
  • Gonzalo Leandro Cesar
    • 1
  • Melisa Daiana Castro Eiro
    • 1
  • María Gabriela Alvarez
    • 2
  • Susana Adriana Laucella
    • 1
    • 2
  1. 1.Instituto Nacional de Parasitología Dr. M. Fatala ChabenBuenos AiresArgentina
  2. 2.Hospital Interzonal General de Agudos Eva PerónBuenos AiresArgentina

Personalised recommendations