Advertisement

In Situ Detection of Dormant Trypanosoma cruzi Amastigotes Using Bioluminescent-Fluorescent Reporters

  • Fernando Sánchez-Valdéz
  • Angel Padilla
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)

Abstract

Chagas disease agent, Trypanosoma cruzi, is capable to persist after prolonged drug treatment using effective drugs. The reason of treatment failure is not known, but recent development of highly sensible bioluminescence imaging coupled to tissue clarification techniques has made possible the detection of individual amastigotes within chronically infected murine tissues and the study of their replicative status. In this chapter, we provide a step-by-step explanation for these protocols that allowed the visualization of nonproliferating amastigotes in tissues of chronically infected mice for the first time.

Key words

Clarification Dormancy Proliferation Bioluminescence Luciferase 

Notes

Acknowledgments

We are grateful to Dr. Rick Tarleton, Wei Wang, Dylan Orr, as well as Julie Nelson from the CTEGD Flow Cytometry Core and Muthugapatti Kandasamy from the Biomedical Microscopy Core. This work was supported by US National Institutes of Health grants AI108265 and AI124692 to Rick Tarleton.

References

  1. 1.
    Rassi A Jr, Rassi A, Marcondes de Rezende J (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin N Am 26:275–291CrossRefGoogle Scholar
  2. 2.
    Sanchez-Valdez FJ, Padilla A, Wang W, Orr D, Tarleton RL (2018) Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 7:e34039CrossRefGoogle Scholar
  3. 3.
    Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA et al (2014) Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 16:1285–1300CrossRefGoogle Scholar
  4. 4.
    Lewis MD, Francisco AF, Taylor MC, Kelly JM (2015) A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. J Biomol Screen 20:36–43CrossRefGoogle Scholar
  5. 5.
    Costa FC, Francisco AF, Jayawardhana S, Calderano SG, Lewis MD, Olmo F et al (2018) Expanding the toolbox for Trypanosoma cruzi: a parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping. PLoS Negl Trop Dis 12:e0006388CrossRefGoogle Scholar
  6. 6.
    Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10:1709–1727CrossRefGoogle Scholar
  7. 7.
    Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P et al (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13:859–867CrossRefGoogle Scholar
  8. 8.
    Canavaci AM, Bustamante JM, Padilla AM, Perez Brandan CM, Simpson LJ, Xu D et al (2010) In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis 4:e740CrossRefGoogle Scholar
  9. 9.
    Tyler KM, Engman DM (2000) Flagellar elongation induced by glucose limitation is preadaptive for Trypanosoma cruzi differentiation. Cell Motil Cytoskeleton 46:269–278CrossRefGoogle Scholar
  10. 10.
    Bourguignon SC, de Souza W, Souto-Padron T (1998) Localization of lectin-binding sites on the surface of Trypanosoma cruzi grown in chemically defined conditions. Histochem Cell Biol 110:527–534CrossRefGoogle Scholar
  11. 11.
    Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 239:217–225CrossRefGoogle Scholar
  12. 12.
    Yeo M, Lewis MD, Carrasco HJ, Acosta N, Llewellyn M, da Silva Valente SA et al (2007) Resolution of multiclonal infections of Trypanosoma cruzi from naturally infected triatomine bugs and from experimentally infected mice by direct plating on a sensitive solid medium. Int J Parasitol 37:111–120CrossRefGoogle Scholar
  13. 13.
    Isola EL, Lammel EM, Gonzalez Cappa SM (1986) Trypanosoma cruzi: differentiation after interaction of epimastigotes and Triatoma infestans intestinal homogenate. Exp Parasitol 62:329–335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fernando Sánchez-Valdéz
    • 1
    • 2
  • Angel Padilla
    • 1
  1. 1.Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUSA
  2. 2.Instituto de Patología Experimental-CONICET, Universidad Nacional de SaltaSaltaArgentina

Personalised recommendations