Advertisement

Exploiting Genetically Modified Dual-Reporter Strains to Monitor Experimental Trypanosoma cruzi Infections and Host-Parasite Interactions

  • Martin C. Taylor
  • Amanda F. Francisco
  • Shiromani Jayawardhana
  • Gurdip Singh Mann
  • Alexander I. Ward
  • Francisco Olmo
  • Michael D. Lewis
  • John M. KellyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1955)

Abstract

Trypanosoma cruzi is the causative agent of Chagas disease, the most important parasitic infection in Latin America. Despite a global research effort, there have been no significant treatment advances for at least 40 years. Gaps in our knowledge of T. cruzi biology and pathogenesis have been major factors in limiting progress. In addition, the extremely low parasite burden during chronic infections has complicated the monitoring of both disease progression and drug efficacy, even in predictive animal models. To address these problems, we genetically modified T. cruzi to express a red-shifted luciferase. Mice infected with these highly bioluminescent parasites can be monitored by in vivo imaging, with exquisite sensitivity. However, a major drawback of bioluminescence imaging is that it does not allow visualization of host-parasite interactions at a cellular level. To facilitate this, we generated T. cruzi strains that express a chimeric protein that is both bioluminescent and fluorescent. Bioluminescence allows the tissue location of infection foci to be identified, and fluorescence can then be exploited to detect parasites in histological sections derived from excised tissue. In this article, we describe in detail the in vivo imaging and confocal microscopy protocols that we have developed for visualizing T. cruzi parasites expressing these dual-reporter fusion proteins. The approaches make it feasible to locate individual parasites within chronically infected murine tissues, to assess their replicative status, to resolve the nature of host cells, and to characterize their immunological context.

Key words

Trypanosoma cruzi Chronic Chagas disease Murine models In vivo imaging Confocal microscopy Bioluminescence Fluorescence 

References

  1. 1.
    Hashimoto K, Yoshioka K (2012) Review: surveillance of Chagas disease. Adv Parasitol 79:375–428CrossRefGoogle Scholar
  2. 2.
    Bern C (2015) Chagas’ disease. N Eng J Med 373:456–466CrossRefGoogle Scholar
  3. 3.
    Bern C, Kjos S, Yabsley MJ et al (2011) Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24:655–681CrossRefGoogle Scholar
  4. 4.
    Requena-Méndez A, Aldasoro E, de Lazzari E et al (2015) Prevalence of Chagas disease in Latin-American migrants living in Europe: a systematic review and meta-analysis. PLoS Negl Trop Dis 9:e0003540CrossRefGoogle Scholar
  5. 5.
    Cardillo F, de Pinho RT, Antas PR et al (2015) Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis 73:ftv082CrossRefGoogle Scholar
  6. 6.
    Tarleton RL (2015) CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol 37:233–238CrossRefGoogle Scholar
  7. 7.
    Ribeiro AL, Nunes MP, Teixeira MM et al (2012) Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol 9:576–589CrossRefGoogle Scholar
  8. 8.
    Cunha-Neto E, Chevillard C (2014) Chagas disease cardiomyopathy: immunopathology and genetics. Mediat Inflammat 2014:683230CrossRefGoogle Scholar
  9. 9.
    Pérez-Molina JA, Molina I (2018) Chagas disease. Lancet 391:82–94CrossRefGoogle Scholar
  10. 10.
    Bonney KM, Engman DM (2015) Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. Am J Pathol 185:1537–1547CrossRefGoogle Scholar
  11. 11.
    Lewis MD, Kelly JM (2016) Putting Trypanosoma cruzi dynamics at the heart of Chagas disease. Trends Parasitol 32:899–911CrossRefGoogle Scholar
  12. 12.
    Francisco AF, Jayawardhana S, Lewis MD et al (2017) Biological factors that impinge on Chagas disease drug development. Parasitology 144:1871–1880CrossRefGoogle Scholar
  13. 13.
    Lewis MD, Fortes Francisco A, Taylor MC et al (2015) A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. J Biomol Screen 20:36–43CrossRefGoogle Scholar
  14. 14.
    Lewis MD, Fortes Francisco A, Taylor MC et al (2014) Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 16:1285–1300CrossRefGoogle Scholar
  15. 15.
    Lewis MD, Fortes Francisco A, Taylor MC et al (2016) Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 18:1429–1443CrossRefGoogle Scholar
  16. 16.
    Costa FC, Francisco AF, Jayawardhana S et al (2018) Expanding the toolbox for Trypanosoma cruzi: A parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping. PLoS Negl Trop Dis 12(4):e0006388CrossRefGoogle Scholar
  17. 17.
    Branchini BR, Ablamsky DM, Davis AL et al (2012) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396:290–297CrossRefGoogle Scholar
  18. 18.
    Kendall G, Wilderspin AF, Ashall F et al (1990) Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase does not conform to the “hotspot” topogenic signal model. EMBO J 9:2751–2758CrossRefGoogle Scholar
  19. 19.
    Lewis MD, Francisco AF, Jayawardhana S et al (2018) Imaging the development of chronic Chagas disease after oral transmission. Sci Rep 8:11292CrossRefGoogle Scholar
  20. 20.
    Nakagawa A, Alt KV, Lillemoe KD et al (2015) A method for fixing and paraffin embedding tissue to retain the natural fluorescence of reporter proteins. Biotechniques 59:153–155CrossRefGoogle Scholar
  21. 21.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefGoogle Scholar
  22. 22.
    Mandell MA, Beverley SM (2017) Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci USA 114:E801–E810CrossRefGoogle Scholar
  23. 23.
    Jensen RE, Englund PT (2012) Network news: the replication of kinetoplast DNA. Annu Rev Microbiol 66:473–491CrossRefGoogle Scholar
  24. 24.
    Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420CrossRefGoogle Scholar
  25. 25.
    Mead TJ, Lefebvre V (2014) Proliferation assays (BrdU and EdU) on skeletal tissue sections. Methods Mol Biol 1130:233–243CrossRefGoogle Scholar
  26. 26.
    da Silva MS, Muñoz PAM, Armelin HA et al (2017) Differences in the detection of BrdU/EdU incorporation assays alter the calculation for G1, S, and G2 phases of the cell cycle in trypanosomatids. J Eukaryot Microbiol 64:756–770CrossRefGoogle Scholar
  27. 27.
    Sloop GD, Roa JC, Delgado AG et al (1999) Histologic sectioning produces TUNEL reactivity. A potential cause of false-positive staining. Arch Pathol Lab Med 123:529–532PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Martin C. Taylor
    • 1
  • Amanda F. Francisco
    • 1
  • Shiromani Jayawardhana
    • 1
  • Gurdip Singh Mann
    • 1
  • Alexander I. Ward
    • 1
  • Francisco Olmo
    • 1
  • Michael D. Lewis
    • 1
  • John M. Kelly
    • 1
    Email author
  1. 1.Department of Pathogen Molecular BiologyLondon School of Hygiene and Tropical MedicineLondonUK

Personalised recommendations