Skip to main content

Probing Structural Changes in Alpha-Synuclein by Nuclear Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Alpha-Synuclein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1948))

Abstract

Alpha-synuclein, the principal protein involved in the pathogenesis of Parkinson’s disease, has been shown to exchange between multiple conformational states, with hitherto unclear physiological role of such conformational changes. Due to its ability to provide rich structural information for proteins in their near-native environment, nuclear magnetic resonance (NMR) spectroscopy has been a valuable tool to study these conformational states. In this review we describe the application of model systems and NMR methods to the study of membrane-bound states of alpha-synuclein. We provide a detailed description, primarily meant for someone new to the field, of how to prepare the necessary samples, perform the basic experiments, and obtain an initial interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bussell R, Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329(4):763–778

    Article  CAS  PubMed  Google Scholar 

  2. Chandra S, Chen X, Rizo J, Jahn R, Südhof TC (2003) A broken α-helix in folded α-synuclein. J Biol Chem 278(17):15313–15318

    Article  CAS  PubMed  Google Scholar 

  3. Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Educ 74(10):1227

    Article  CAS  Google Scholar 

  4. Fuguet E, Ràfols C, Rosés M, Bosch E (2005) Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta 548(1–2):95–100

    Article  CAS  Google Scholar 

  5. Mazer NA, Benedek GB, Carey MC (1976) An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy. J Phys Chem 80(10):1075–1085

    Article  CAS  Google Scholar 

  6. Duplatre G, MR FM (1996) Size of sodium dodecyl sulfate micelles in aqueous solutions as studied by positron annihilation lifetime spectroscopy. J Phys Chem 3654(96):16608–16612

    Article  Google Scholar 

  7. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2010) The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J Biol Chem 285(36):28261–28274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eliezer D, Kutluay E, Bussell R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073

    Article  CAS  PubMed  Google Scholar 

  9. Bodner CR, Dobson CM, Bax A (2009) Multiple tight phospholipid-binding modes of α-Synuclein revealed by solution NMR spectroscopy. J Mol Biol 390(4):775–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bussell R, Eliezer D (2004) Effects of Parkinson’s disease-linked mutations on the structure of lipid-associated alpha-synuclein. Biochemistry 43(16):4810–4818

    Article  CAS  PubMed  Google Scholar 

  11. Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G (1973) Adult rat brain synaptic vesicles II. Lipid composition. Biochim Biophys Acta Gen Subj 320(3):681–686

    Article  CAS  Google Scholar 

  12. Deutsch JW, Kelly RB (1981) Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20(2):378–385

    Article  CAS  PubMed  Google Scholar 

  13. Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  PubMed  Google Scholar 

  14. Barenholz Y, Gibbes D, Litman BJ, Goll J, Thompson TE, Carlson RD (1977) A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 16(12):2806–2810

    Article  CAS  PubMed  Google Scholar 

  15. Middleton ER, Rhoades E (2010) Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys J 99(7):2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dürr UHN, Soong R, Ramamoorthy A (2013) When detergent meets bilayer: birth and coming of age of lipid bicelles. Prog Nucl Magn Reson Spectrosc 69:1–22

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856

    Article  CAS  Google Scholar 

  18. Yusuf Y, Massiot J, Chang Y-T, Wu P-H, Yeh V, Kuo P-C et al (2018) Optimization of the production of covalently circularized nanodiscs and their characterization in physiological conditions. Langmuir 34(11):3525–3532

    Article  CAS  PubMed  Google Scholar 

  19. Nasr ML, Baptista D, Strauss M, Sun ZYJ, Grigoriu S, Huser S et al (2016) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14(1):49–52

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nasr ML, Wagner G (2018) Covalently circularized nanodiscs; challenges and applications. Curr Opin Struct Biol 51:129–134

    Article  CAS  PubMed  Google Scholar 

  21. Popp M, Antos JM, Ploegh HL (2009) Current protocols in protein science. Curr Protoc Protein Sci Chapter 15:Unit 15.3

    PubMed  Google Scholar 

  22. Viennet T, Wördehoff MM, Uluca B, Poojari C, Hoyer W, Etzkorn M et al (2017) A structural and kinetic link between membrane association and amyloid fibril formation of α-Synuclein. BioRxiv 1:1–31

    Google Scholar 

  23. Coelho-Cerqueira E, Carmo-Gonçalves P, Sá Pinheiro A, Cortines J, Follmer C (2013) α-Synuclein as an intrinsically disordered monomer—Fact or artefact? FEBS J 280(19):4915–4927

    Article  CAS  PubMed  Google Scholar 

  24. Kaiser J, Schafer R (1980) On the use of the I0-sinh window for spectrum analysis. IEEE Trans Acoust 28(1):105–107

    Article  Google Scholar 

  25. Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Experimental aspects of NMR spectroscopy. In: Protein NMR spectroscopy. Elsevier, New York, pp 114–270

    Chapter  Google Scholar 

  26. Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49(2):139–149

    Article  CAS  PubMed  Google Scholar 

  27. Kjaergaard M, Poulsen FM (2011) Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR 50(2):157–165

    Article  CAS  PubMed  Google Scholar 

  28. Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123(13):2970–2978

    Article  CAS  PubMed  Google Scholar 

  29. Bax A (1989) Two-dimensional NMR and protein structure. Annu Rev Biochem 58:223–256

    Article  CAS  PubMed  Google Scholar 

  30. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130(39):12856–12857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anderson VL, Ramlall TF, Rospigliosi CC, Webb WW, Eliezer D (2010) Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proc Natl Acad Sci U S A 107(44):18850–18855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dikiy I, Eliezer D (2012) Folding and misfolding of alpha-synuclein on membranes. Biochim Biophys Acta 1818(4):1013–1018

    Article  CAS  PubMed  Google Scholar 

  33. Dikiy I, Fauvet B, Jovičić A, Mahul-Mellier AL, Desobry C, El-Turk F et al (2016) Semisynthetic and in vitro phosphorylation of alpha-Synuclein at Y39 promotes functional partly helical membrane-bound states resembling those induced by PD mutations. ACS Chem Biol 11(9):2428–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sung Y-H, Eliezer D (2018) Structure and dynamics of the extended-helix state of alpha-synuclein: intrinsic lability of the linker region. Protein Sci 22(6):1–50

    Google Scholar 

  35. Rovere M, Sanderson JB, Fonseca-Ornelas L, Patel DS, Bartels T (2018) Refolding of helical soluble α-synuclein through transient interaction with lipid interfaces. FEBS Lett 592:1464

    Article  CAS  PubMed  Google Scholar 

  36. Eliezer D (2006) Characterizing residual structure in disordered protein states using nuclear magnetic resonance. In: Bai Y, Nussinov R (eds) Protein folding protocols. Humana Press, Totowa, pp 49–68

    Chapter  Google Scholar 

  37. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E et al (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140

    Article  CAS  PubMed  Google Scholar 

  38. Eliezer D (2012) Distance information for disordered proteins from NMR and ESR measurements using paramagnetic spin labels. Methods Mol Biol 895(1):127–138

    Article  CAS  PubMed  Google Scholar 

  39. Anthis NJ, Clore GM (2015) Visualizing transient dark states by NMR spectroscopy. Q Rev Biophys 48(1):35–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fawzi NL, Ying J, Torchia DA, Clore GM (2010) Kinetics of amyloid β monomer-to-oligomer exchange by NMR relaxation. J Am Chem Soc 132(29):9948–9951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480(7376):268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fusco G, Pape T, Stephens AD, Mahou P, Costa AR, Kaminski CF et al (2016) Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat Commun 7:1–11

    Google Scholar 

  43. Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM et al (2014) Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat Commun 5(May):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eliezer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, T., Eliezer, D. (2019). Probing Structural Changes in Alpha-Synuclein by Nuclear Magnetic Resonance Spectroscopy. In: Bartels, T. (eds) Alpha-Synuclein. Methods in Molecular Biology, vol 1948. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9124-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9124-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9123-5

  • Online ISBN: 978-1-4939-9124-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics