Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands

Part of the Methods in Molecular Biology book series (MIMB, volume 1947)


G protein-coupled receptors (GPCRs) respond to a wide range of extracellular cues to initiate complex downstream signaling cascades that control myriad aspects of cell function. Despite a long-standing appreciation of their importance to both basic physiology and disease treatment, it remains a major challenge to understand the dynamic activation patterns of GPCRs and the mechanisms by which they modulate biological processes at the molecular, cellular, and tissue levels. Unfortunately, classical methods of pharmacology and genetic knockout are often unable to provide the requisite precision needed to probe such questions. This is an especially pressing challenge for the class C GPCR family which includes receptors for the major excitatory and inhibitory neurotransmitters, glutamate and GABA, which signal in a rapid, spatially-delimited manner and contain many different subtypes whose roles are difficult to disentangle. The desire to manipulate class C GPCRs with spatiotemporal precision, genetic targeting, and subtype specificity has led to the development of a variety of photopharmacological tools. Of particular promise are the photoswitchable orthogonal remotely tethered ligands (“PORTLs”) which attach to self-labeling tags that are genetically encoded into full length, wild-type metabotropic glutamate receptors (mGluRs) and allow the receptor to be liganded and un-liganded in response to different wavelengths of illumination. While powerful for studying class C GPCRs, a number of detailed considerations must be made when working with these tools. The protocol included here should provide a basis for the development, characterization, optimization, and application of PORTLs for a wide range of GPCRs.

Key words

Optogenetics Photopharmacology Tethered ligands G protein-coupled receptors Metabotropic glutamate receptors PORTLs Neuromodulation SNAP tag 



We thank the Levitz and Broichhagen labs for useful discussion, and all previous and current members of the Isacoff and Trauner labs for their contributions to the development and application of photoswitchable ligands and receptors. J.B. thanks Kai Johnsson for constant support. J.L. is supported by an R35 grant from the National Institute of General Medical Science (1 R35 GM124731).


  1. 1.
    Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357PubMedCrossRefGoogle Scholar
  2. 2.
    Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25(1):4–12PubMedCrossRefGoogle Scholar
  3. 3.
    Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pin JP, Bettler B (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540(7631):60–68PubMedCrossRefGoogle Scholar
  5. 5.
    Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297PubMedCrossRefGoogle Scholar
  6. 6.
    Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H (2014) The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171(5):1129–1141PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sutton LP, Orlandi C, Song C, Oh WC, Muntean BS, Xie K, Filippini A, Xie X, Satterfield R, Yaeger JDW, Renner KJ, Young SM Jr, Xu B, Kwon H, Martemyanov KA (2018) Orphan receptor GPR158 controls stress-induced depression. Elife 7.
  8. 8.
    Spangler SM, Bruchas MR (2017) Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 32:56–70PubMedCrossRefGoogle Scholar
  9. 9.
    Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90(16):7661–7665PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143PubMedCrossRefGoogle Scholar
  11. 11.
    Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 104:10865–10870PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357(6350):503–507PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rost BR, Schneider-Warme F, Schmitz D, Hegemann P (2017) Optogenetic tools for subcellular applications in neuroscience. Neuron 96(3):572–603PubMedCrossRefGoogle Scholar
  16. 16.
    Morri M, Sanchez-Romero I, Tichy AM, Kainrath S, Gerrard EJ, Hirschfeld PP, Schwarz J, Janovjak H (2018) Optical functionalization of human Class A orphan G-protein-coupled receptors. Nat Commun 9(1):1950PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029PubMedCrossRefGoogle Scholar
  18. 18.
    Siuda ER, Copits BA, Schmidt MJ, Baird MA, Al-Hasani R, Planer WJ, Funderburk SC, McCall JG, Gereau RWt, Bruchas MR (2015) Spatiotemporal control of opioid signaling and behavior. Neuron 86(4):923–935PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Oh E, Maejima T, Liu C, Deneris E, Herlitze S (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285(40):30825–30836PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16(4):507–516PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Masseck OA, Spoida K, Dalkara D, Maejima T, Rubelowski JM, Wallhorn L, Deneris ES, Herlitze S (2014) Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 81(6):1263–1273PubMedCrossRefGoogle Scholar
  22. 22.
    Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16(7):816–823PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52PubMedCrossRefGoogle Scholar
  25. 25.
    Levitz J, Popescu AT, Reiner A, Isacoff EY (2016) A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors. Front Mol Neurosci 9:2PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Levitz J, Habrian C, Bharill S, Fu Z, Vafabakhsh R, Isacoff EY (2016) Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron 92(1):143–159PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Carroll EC, Berlin S, Levitz J, Kienzler MA, Yuan Z, Madsen D, Larsen DS, Isacoff EY (2015) Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S A 112(7):E776–E785PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li D, Herault K, Zylbersztejn K, Lauterbach MA, Guillon M, Oheim M, Ropert N (2015) Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking. J Physiol 593(13):2807–2832PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    DuBay KH, Iwan K, Osorio-Planes L, Geissler PL, Groll M, Trauner D, Broichhagen J (2018) A predictive approach for the optical control of carbonic anhydrase II activity. ACS Chem Biol 13(3):793–800PubMedCrossRefGoogle Scholar
  30. 30.
    Broichhagen J, Damijonaitis A, Levitz J, Sokol KR, Leippe P, Konrad D, Isacoff EY, Trauner D (2015) Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand. ACS Cent Sci 1(7):383–393PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Levitz J, Broichhagen J, Leippe P, Konrad D, Trauner D, Isacoff EY (2017) Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 114(17):e3546–e3554PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136CrossRefGoogle Scholar
  33. 33.
    Schonberger M, Trauner D (2014) A photochromic agonist for mu-opioid receptors. Angew Chem Int Ed Engl 53(12):3264–3267PubMedCrossRefGoogle Scholar
  34. 34.
    Donthamsetti PC, Winter N, Schonberger M, Levitz J, Stanley C, Javitch JA, Isacoff EY, Trauner D (2017) Optical control of dopamine receptors using a photoswitchable tethered inverse agonist. J Am Chem Soc 139(51):18522–18535PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Broichhagen J, Podewin T, Meyer-Berg H, von Ohlen Y, Johnston NR, Jones BJ, Bloom SR, Rutter GA, Hoffmann-Roder A, Hodson DJ, Trauner D (2015) Optical control of insulin secretion using an incretin switch. Angew Chem Int Ed Engl 54(51):15565–15569PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Broichhagen J, Johnston NR, von Ohlen Y, Meyer-Berg H, Jones BJ, Bloom SR, Rutter GA, Trauner D, Hodson DJ (2016) Allosteric optical control of a class B G-protein-coupled receptor. Angew Chem Int Ed Engl 55(19):5865–5868PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Agnetta L, Kauk M, Canizal MCA, Messerer R, Holzgrabe U, Hoffmann C, Decker M (2017) A photoswitchable dualsteric ligand controlling receptor efficacy. Angew Chem Int Ed Engl 56(25):7282–7287PubMedCrossRefGoogle Scholar
  38. 38.
    Westphal MV, Schafroth MA, Sarott RC, Imhof MA, Bold CP, Leippe P, Dhopeshwarkar A, Grandner JM, Katritch V, Mackie K, Trauner D, Carreira EM, Frank JA (2017) Synthesis of photoswitchable delta(9)-tetrahydrocannabinol derivatives enables optical control of cannabinoid receptor 1 signaling. J Am Chem Soc 139(50):18206–18212PubMedCrossRefGoogle Scholar
  39. 39.
    Hauwert NJ, Mocking TAM, Da Costa Pereira D, Kooistra AJ, Wijnen LM, Vreeker GCM, Verweij EWE, De Boer AH, Smit MJ, De Graaf C, Vischer HF, de Esch IJP, Wijtmans M, Leurs R (2018) Synthesis and characterization of a bidirectional photoswitchable antagonist toolbox for real-time GPCR photopharmacology. J Am Chem Soc 140(12):4232–4243PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Podewin T, Ast J, Broichhagen J, Fine NHF, Nasteska D, Leippe P, Gailer M, Buenaventura T, Kanda N, Jones BJ, M'Kadmi C, Baneres JL, Marie J, Tomas A, Trauner D, Hoffmann-Roder A, Hodson DJ (2018) Conditional and reversible activation of class A and B G protein-coupled receptors using tethered pharmacology. ACS Cent Sci 4(2):166–179PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR (2017) Deconstructing behavioral neuropharmacology with cellular specificity. Science 356(6333). Scholar
  42. 42.
    Nishiyama J, Mikuni T, Yasuda R (2017) Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96(4):755–768.e5PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Farrants H, Acosta-Ruiz A, Gutzeit VA, Trauner D, Johnsson K, Levitz J, Broichhagen J (2018) SNAP-tagged nanobodies enable reversible optical control of a G protein-coupled receptor via a remotely tethered photoswitchable ligand. ACS Chem Biol 13(9):2682–2688PubMedCrossRefGoogle Scholar
  44. 44.
    Berry MH, Holt A, Levitz J, Broichhagen J, Gaub BM, Visel M, Stanley C, Aghi K, Kim YJ, Cao K, Kramer RH, Trauner D, Flannery J, Isacoff EY (2017) Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat Commun 8(1):1862PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12:14PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25(1):66–77PubMedCrossRefGoogle Scholar
  47. 47.
    Conklin BR, Farfel Z, Lustig KD, Julius D, Bourne HR (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363(6426):274–276PubMedCrossRefGoogle Scholar
  48. 48.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Deo C, Lavis LD (2018) Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 50:101–108PubMedCrossRefGoogle Scholar
  50. 50.
    Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sandoz G, Levitz J, Kramer RH, Isacoff EY (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Neuron 74(6):1005–1014PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263CrossRefGoogle Scholar
  53. 53.
    Peng Y, Xiong WC, Mei L (2013) Culture of dissociated hippocampal neurons. Methods Mol Biol 1018:39–47PubMedCrossRefGoogle Scholar
  54. 54.
    Lüscher C, Slesinger PA (2010) Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11(5):301–315PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135(47):17683–17686PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Iacovelli L, Molinaro G, Battaglia G, Motolese M, Di Menna L, Alfiero M, Blahos J, Matrisciano F, Corsi M, Corti C, Bruno V, De Blasi A, Nicoletti F (2009) Regulation of group II metabotropic glutamate receptors by G protein-coupled receptor kinases: mGlu2 receptors are resistant to homologous desensitization. Mol Pharmacol 75(4):991–1003PubMedCrossRefGoogle Scholar
  57. 57.
    Barber DM, Liu SA, Gottschling K, Sumser M, Hollmann M, Trauner D (2017) Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist. Chem Sci 8(1):611–615PubMedCrossRefGoogle Scholar
  58. 58.
    Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437PubMedCrossRefGoogle Scholar
  59. 59.
    Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA (2015) Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res 48(10):2662–2670PubMedCrossRefGoogle Scholar
  60. 60.
    Alagem N, Dvir M, Reuveny E (2001) Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. J Physiol 534(Pt 2):381–393PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37(38):13291–13299PubMedCrossRefGoogle Scholar
  62. 62.
    Hackley CR, Mazzoni EO, Blau J (2018) cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci Signal 11(520). Scholar
  63. 63.
    Klarenbeek J, Goedhart J, van Batenburg A, Groenewald D, Jalink K (2015) Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One 10(4):e0122513PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Harada K, Ito M, Wang X, Tanaka M, Wongso D, Konno A, Hirai H, Hirase H, Tsuboi T, Kitaguchi T (2017) Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci Rep 7(1):7351PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8(6):343–346PubMedCrossRefGoogle Scholar
  66. 66.
    Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105(49):19264–19269PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    de la Cova C, Townley R, Regot S, Greenwald I (2017) A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell 42(5):542–553.e4PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J (2015) Dynamic visualization of mTORC1 activity in living cells. Cell Rep. Scholar
  69. 69.
    Lee SJR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ai M, Mills H, Kanai M, Lai J, Deng J, Schreiter E, Looger L, Neubert T, Suh G (2015) Green-to-red photoconversion of GCaMP. PLoS One 10(9):e0138127PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistryWeill Cornell MedicineNew YorkUSA
  2. 2.Department of Chemical BiologyMax Planck Institute for Medical ResearchHeidelbergGermany

Personalised recommendations