Advertisement

Optical Modulation of Metabotropic Glutamate Receptor Type 5 In Vivo Using a Photoactive Drug

  • Marc López-Cano
  • Joan Font
  • Amadeu Llebaria
  • Víctor Fernández-Dueñas
  • Francisco CiruelaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1947)

Abstract

Optopharmacology is a very promising approach based on the use of light-deliverable drugs, which allows manipulating physiological processes with high spatiotemporal resolution. Light-dependent drugs (i.e. caged-compounds) targeting G protein-coupled receptors (GPCRs) have been developed to provide great pharmacological precision on the control of pain. Metabotropic glutamate type 5 (mGlu5) receptors are widely expressed through the pain neuraxis and play a key role in pain transmission. In line with this, selective mGlu5 receptor negative allosteric modulators (NAMs) have consistently shown analgesic activity in experimental animal models of inflammatory pain. Accordingly, we synthesized a light-deliverable drug (i.e. caged compound) using the chemical structure of raseglurant, a mGlu5 receptor NAM, as a molecular scaffold. And thereafter, we evaluated the analgesic activity of the caged compound in formalin-injected (hind paw) mice upon light irradiation (405 nm). Of note, light was both delivered at the peripheral (i.e. hind paw) and central level (i.e. thalamus), by means of brain-implanted fiber-optics. The novel light-deliverable drug, JF-NP-26, showed antinociceptive activity upon violet light irradiation either of the hind paw or the thalamus, demonstrating the ability of precisely activating, in time and space, the caged compound. Here, we describe in detail the protocol used to perform a reliable and reproducible formalin nociception test in mice using an optopharmacology approach (i.e. light-deliverable compounds).

Key words

mGlu5 receptor Optopharmacology Pain Analgesia Mice 

Notes

Acknowledgments

This work was supported by MINECO/ISCIII (SAF2017-87349-R and PIE14/00034), the Catalan government (2017 SGR 1604), Fundació la Marató de TV3 (Grant 20,152,031), FWO (SBO-140028) to FC. MINECO (PCIN-2013-017-C03-01 and CTQ2014-57020-R), the Catalan government (2014SGR109 and 2014CTP0002) to AL. We thank Esther Castaño and Benjamín Torrejón, from the CCiT-Bellvitge Campus of the University of Barcelona for the technical assistance.

References

  1. 1.
    Fajardo O, Friedrich RW (2013) A light switch for pain. Nat Chem Biol 9:219–220.  https://doi.org/10.1038/nchembio.1203CrossRefPubMedGoogle Scholar
  2. 2.
    Kolber BJ (2015) mGluRs head to toe in pain. Prog Mol Biol Transl Sci 131:281–324.  https://doi.org/10.1016/bs.pmbts.2014.12.003CrossRefPubMedGoogle Scholar
  3. 3.
    Font J, López-Cano M, Notartomaso S et al (2017) Optical control of pain in vivo with a photoactive mGlu 5 receptor negative allosteric modulator. elife 6:e23545.  https://doi.org/10.7554/eLife.23545CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bhave G, Karim F, Carlton SM, Gereau RW (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4:417–423.  https://doi.org/10.1038/86075CrossRefPubMedGoogle Scholar
  5. 5.
    Palazzo E, Marabese I, de Novellis V et al (2014) Supraspinal metabotropic glutamate receptors: a target for pain relief and beyond. Eur J Neurosci 39:444–454.  https://doi.org/10.1111/ejn.12398CrossRefPubMedGoogle Scholar
  6. 6.
    Lea PM 4th, Faden AI (2006) Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev 12:149–166.  https://doi.org/10.1111/j.1527-3458.2006.00149.xCrossRefPubMedGoogle Scholar
  7. 7.
    Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294.  https://doi.org/10.1038/nrn2606CrossRefPubMedGoogle Scholar
  8. 8.
    Tjolsen A, Berge OG, Hunskaar S et al (1992) The formalin test: an evaluation of the method. Pain 51:5–17CrossRefGoogle Scholar
  9. 9.
    Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114CrossRefGoogle Scholar
  10. 10.
    Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic PressGoogle Scholar
  11. 11.
    Clark JD, Gebhart GF, Gonder JC et al (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48CrossRefGoogle Scholar
  12. 12.
    López-Cano M, Fernández-Dueñas V, Llebaria A, Ciruela F (2017) Formalin murine model of pain. Bio-Protocols 7:e2628Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marc López-Cano
    • 1
    • 2
  • Joan Font
    • 3
  • Amadeu Llebaria
    • 3
  • Víctor Fernández-Dueñas
    • 1
    • 2
  • Francisco Ciruela
    • 1
    • 2
    Email author
  1. 1.Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, L’Hospitalet de LlobregatUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
  3. 3.MCS, Laboratory of Medicinal ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC-CSIC)BarcelonaSpain

Personalised recommendations