Monitoring the Aggregation of GPCRs by Fluorescence Microscopy

  • Samuel Génier
  • Jade Degrandmaison
  • Christine L. Lavoie
  • Louis Gendron
  • Jean-Luc ParentEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1947)


G protein-coupled receptors (GPCRs) contain highly hydrophobic domains that are subject to aggregation when exposed to the crowded environment of the cytoplasm. Many events can lead to protein aggregation such as mutations, endoplasmic reticulum (ER) stress, and misfolding. These processes have been widely known to impact GPCR folding, maturation, and localization. Protein aggregates are transported toward the microtubule-organizing center via dynein to form a large juxta-nuclear structure called the aggresome, and in due course, are then targeted for degradation. Here, we describe a method to study aggregation of GPCRs by fluorescence microscopy.

Key words

GPCR Aggregation Aggresome Misfolding PROTEOSTAT® 



This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada and by the André-Lussier Research chair to J.-L.P, and by Ph.D. scholarships from NSERC (S.G.) and from the Fonds de Recherche du Québec-Santé (S.G. and J.D.). The authors are grateful to Leonid Volkov for his expertise in confocal microscopy.


  1. 1.
    Hauser AS, Attwood MM, Rask-Andersen M et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842CrossRefGoogle Scholar
  2. 2.
    Dupré DJ, Hébert TE (2006) Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 18:1549–1559CrossRefGoogle Scholar
  3. 3.
    Tao YX, Conn PM (2014) Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 35:602–647CrossRefGoogle Scholar
  4. 4.
    Saliba RS, Munro PMG, Luthert PJ et al (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918PubMedGoogle Scholar
  5. 5.
    Génier S, Degrandmaison J, Moreau P et al (2016) Regulation of GPCR expression through an interaction with CCT7, a subunit of the CCT/TRiC complex. Mol Biol Cell 27:3800–3812CrossRefGoogle Scholar
  6. 6.
    Zaarur N, Meriin AB, Gabai VL et al (2008) Triggering aggresome formation: dissecting aggresome-targeting and aggregation signals in synphilin 1. J Biol Chem 283:27575–27584CrossRefGoogle Scholar
  7. 7.
    Hao R, Nanduri P, Rao Y et al (2013) Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol Cell 51:819–828CrossRefGoogle Scholar
  8. 8.
    Gendron L, Cahill CM, von Zastrow M et al (2016) Molecular pharmacology of δ-opioid receptors. Pharmacol Rev 68:631–700CrossRefGoogle Scholar
  9. 9.
    Petäjä-Repo UE, Hogue M, Laperrière A et al (2001) Newly synthesized human δ opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 276:4416–4423CrossRefGoogle Scholar
  10. 10.
    Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40:101–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Samuel Génier
    • 1
  • Jade Degrandmaison
    • 1
  • Christine L. Lavoie
    • 2
  • Louis Gendron
    • 2
  • Jean-Luc Parent
    • 1
    Email author
  1. 1.Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de SherbrookeUniversité de SherbrookeSherbrookeCanada
  2. 2.Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de SherbrookeUniversité de SherbrookeSherbrookeCanada

Personalised recommendations