Advertisement

Reverse Vaccinology Approach to Potential Vaccine Candidates Against Acinetobacter baumannii

  • Fatima Shahid
  • Shifa Tariq Ashraf
  • Amjad AliEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1946)

Abstract

Acinetobacter baumannii is a rapidly evolving pathogen that largely inhabits intensive care units (ICU). This opportunistic, gram-negative organism has shown noteworthy taxonomic variations during the past three decades. A. baumannii functions as a catalase-positive, oxidase-negative obligate, aerobic, nonmotile, highly infectious, and multidrug-resistant bacterium. Therefore, the infection caused by this bacterium tends to have a fairly higher incidence rate in immune-compromised individuals ranging from 26.5% to 91%, as it colonizes in skin tissues and secretions of the respiratory tract. Recently, it has been globally labeled as a “red alert” pathogen, setting alarms throughout the medical community, arising mainly due to its widespread antibiotic resistance continuum. There is a dire need for alternative therapeutic intervention to combat A. baumannii-associated infections and the growing resistance. This chapter focuses upon the reverse vaccinology-based steps and strategies to identify novel potential vaccine candidates against this emerging pathogen.

Key words

A. baumannii Reverse vaccinology PVCs Antibiotic resistance In silico 

References

  1. 1.
    Elouennass M, Sahnoun I, Zrara A, Bajjou T, Elhamzaoui S (2008) Épidémiologie et profil de sensibilité des isolats d’hémoculture dans un service de réanimation (2002–2005). Médecine Mal Infect [Internet] 38(1):18–24 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/18065180CrossRefGoogle Scholar
  2. 2.
    Lahsoune M, Boutayeb H, Zerouali K, Belabbes H, El Mdaghri N (2007) Prévalence et état de sensibilité aux antibiotiques d’Acinetobacter baumannii dans un CHU marocain. Médecine Mal Infect [Internet] 37(12):828–831 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/17669611CrossRefGoogle Scholar
  3. 3.
    Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA [Internet] 302(21):2323 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/19952319CrossRefGoogle Scholar
  4. 4.
    Simor AE, Lee M, Vearncombe M, Jones-Paul L, Barry C, Gomez M et al (2002) An outbreak due to multiresistant Acinetobacter baumannii in a burn unit: risk factors for acquisition and management. Infect Control Hosp Epidemiol [Internet] 23(5):261–267 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/12026151CrossRefGoogle Scholar
  5. 5.
    Ntusi NBA, Badri M, Khalfey H, Whitelaw A, Oliver S, Piercy J et al (2012) ICU-associated Acinetobacter baumannii colonisation/infection in a high HIV-prevalence resource-poor setting. PLoS One [Internet] 7(12):e52452 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/23300673CrossRefGoogle Scholar
  6. 6.
    Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L et al (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet [Internet] 2(1):e7 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/16415984CrossRefGoogle Scholar
  7. 7.
    Uwingabiye J, Frikh M, Lemnouer A, Bssaibis F, Belefquih B, Maleb A et al (2016) Acinetobacter infections prevalence and frequency of the antibiotics resistance: comparative study of intensive care units versus other hospital units. Pan Afr Med J [Internet] 23:191 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/27347280Google Scholar
  8. 8.
    Xu J, Sun Z, Li Y, Zhou Q (2013) Surveillance and correlation of antibiotic consumption and resistance of Acinetobacter baumannii complex in a Tertiary Care Hospital in Northeast China, 2003–2011. Int J Environ Res Public Health [Internet] 10(4):1462–1473 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/23571451CrossRefGoogle Scholar
  9. 9.
    Ben Haj Khalifa A, Khedher M (2010) Profil de sensibilité aux antibiotiques des souches d’Acinetobacter baumannii isolées dans la région de Mahdia. Médecine Mal Infect [Internet] 40(2):126–128 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/19796896CrossRefGoogle Scholar
  10. 10.
    Jaggi N, Sissodia P, Sharma L (2012) Acinetobacter baumannii isolates in a tertiary care hospital: antimicrobial resistance and clinical significance. J Microbiol Infect Dis [Internet] 2(2):57–63 [cited 2018 Mar 26]. http://www.jmidonline.org/upload/sayi/8/JMID-00562.pdfCrossRefGoogle Scholar
  11. 11.
    Queenan AM, Pillar CM, Deane J, Sahm DF, Lynch AS, Flamm RK et al (2012) Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis [Internet] 73(3):267–270 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/22579652CrossRefGoogle Scholar
  12. 12.
    Al-Mously N, Hakawi A, Author C (2013) Acinetobacter baumannii bloodstream infections in a tertiary hospital: antimicrobial resistance surveillance. Int J Infect Control [Internet] 9(9):2 [cited 2018 Mar 26]. www.ijic.infoGoogle Scholar
  13. 13.
    Elouennass M, Bajou T, Lemnouer A, Foissaud V, Hervé V, Baaj A (2003) Acinetobacter baumannii: étude de la sensibilité des souches isolées à l’hôpital militaire d’instruction Mohammed V, Rabat, Maroc. Médecine Mal Infect [Internet] 33(7):361–364 [cited 2018 Mar 26]. http://linkinghub.elsevier.com/retrieve/pii/S0399077X03002051CrossRefGoogle Scholar
  14. 14.
    Rizwan M, Naz A, Ahmad J, Naz K, Obaid A, Parveen T et al (2017) VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC Bioinformatics [Internet] 18(1):106 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/28193166CrossRefGoogle Scholar
  15. 15.
    Kotb M (1995) Infection and autoimmunity: a story of the host, the pathogen, and the copathogen. Clin Immunol Immunopathol [Internet] 74(1):10–22 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/7994918CrossRefGoogle Scholar
  16. 16.
    Naz A, Awan FM, Obaid A, Muhammad SA, Paracha RZ, Ahmad J et al (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect Genet Evol [Internet] 32:280–291 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/25818402CrossRefGoogle Scholar
  17. 17.
    Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res [Internet] 35(Database):D61–D65 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/17130148CrossRefGoogle Scholar
  18. 18.
    Pertsemlidis A, Fondon JW (2001) Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol [Internet] 2(10):REVIEWS2002. http://www.ncbi.nlm.nih.gov/pubmed/11597340Google Scholar
  19. 19.
    Kaufmann SHE, Lambert PH (2005) The grand challenge for the future: vaccines for poverty-related diseases from bench to field. Birkhäuser, Basel, 290 pCrossRefGoogle Scholar
  20. 20.
    Yu C-S, Cheng C-W, Su W-C, Chang K-C, Huang S-W, Hwang J-K et al (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One [Internet] 9(6):e99368 [cited 2018 Mar 26]. http://dx.plos.org/10.1371/journal.pone.0099368CrossRefGoogle Scholar
  21. 21.
    Luo H, Lin Y, Gao F, Zhang C-T, Zhang R (2014) DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements: Table 1. Nucleic Acids Res [Internet] 42(D1):D574–D580 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/24243843CrossRefGoogle Scholar
  22. 22.
    Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y et al (2004) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res [Internet] 33(Database issue):D325–D328 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/15608208CrossRefGoogle Scholar
  23. 23.
    Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics [Internet] 17(9):849–850 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/11590105CrossRefGoogle Scholar
  24. 24.
    UniProt Consortium (2007) The Universal protein resource (UniProt). Nucleic Acids Res [Internet] 36(Database):D190–D195 [cited 2018 Mar 26]. http://www.ncbi.nlm.nih.gov/pubmed/18045787CrossRefGoogle Scholar
  25. 25.
    von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res [Internet] 31(1):258–261 [cited 2018 Mar 27]. http://www.ncbi.nlm.nih.gov/pubmed/12519996CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Atta-ur-Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations