Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with Porgy

  • Oana Andrei
  • Maribel Fernández
  • Hélène Kirchner
  • Bruno PinaudEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1945)


This chapter presents Porgy—an interactive visual environment for rule-based modelling of biochemical systems. We model molecules and molecule interactions as port graphs and port graph rewrite rules, respectively. We use rewriting strategies to control which rules to apply, and where and when to apply them. Our main contributions to rule-based modelling of biochemical systems lie in the strategy language and the associated visual and interactive features offered by Porgy. These features facilitate an exploratory approach to test different ways of applying the rules while recording the model evolution, and tracking and plotting parameters. We illustrate Porgy’s features with a study of the role of a scaffold protein in RAF/MEK/ERK signalling.

Key words

Computational systems biology Biochemical networks Rule-based modelling Graph transformations Strategic rewriting Visual Analytics Software 



We thank Guy Melançon and Olivier Namet for their work in the initial Porgy project (2009–2012); their ideas and enthusiasm were invaluable during the early stages of development of this tool. We also thank Jason Vallet for implementing several features of Porgy and writing the documentation.


  1. 1.
    Chylek LA, Harris LA, Faeder JR, Hlavacek WS (2015) Modeling for (physical) biologists: an introduction to the rule-based approach. Phys Biol 12:045007CrossRefGoogle Scholar
  2. 2.
    Pfaltz JL, Rosenfeld A (1969) Web grammars. In: IJCAI’69: proceedings of the 1st international joint conference on artificial intelligence. Morgan Kaufmann Publishers, San Francisco, pp 609–620Google Scholar
  3. 3.
    Bunke H (1982) Attributed programmed graph grammars and their application to schematic diagram interpretation. IEEE Trans Pattern Anal Mach Intell 4:574–582CrossRefGoogle Scholar
  4. 4.
    Rozenberg G (ed) (1997) Handbook of graph grammars and computing by graph transformation: foundations, vol 1. World Scientific, SingaporeGoogle Scholar
  5. 5.
    Corradini A, Montanari U, Rossi F, Ehrig H, Heckel R, Löwe M (1997) Algebraic approaches to graph transformation, Part I: basic concepts and double pushout approach. In: Rozenberg G (ed) Handbook of graph grammars and computing by graph transformation: foundations, vol 1. World Scientific, Singapore, pp 163–246CrossRefGoogle Scholar
  6. 6.
    Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–167CrossRefGoogle Scholar
  7. 7.
    Smith AM, Xu W, Sun Y, Faeder JR, Marai GE (2012) RuleBender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinf 13:S3CrossRefGoogle Scholar
  8. 8.
    Wenskovitch JE Jr, Harris LA, Tapia JJ, Faeder JR, Marai GE (2014) MOSBIE: a tool for comparison and analysis of rule-based biochemical models. BMC Bioinf 15:316CrossRefGoogle Scholar
  9. 9.
    Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular signaling networks. In: APLAS 2007: programming languages and systems. Lecture notes in computer science, vol 4807, pp 139–157CrossRefGoogle Scholar
  10. 10.
    Ermel C, Rudolf M, Taentzer G (1999) The AGG approach: language and environment. In: Ehrig H, Engels G, Kreowski HJ, Rozenberg G (eds) Handbook of graph grammars and computing by graph transformation: applications, languages and tools, vol 2. World Scientific, Singapore, pp 551–603CrossRefGoogle Scholar
  11. 11.
    Schürr A, Winter AJ, Zündorf A (1997) The PROGRES approach: language and environment. In: Ehrig H, Engels G, Kreowski HJ, Rozenberg G (eds) Handbook of graph grammars and computing by graph transformation: applications, languages and tools, vol 2. World Scientific, Singapore, pp 479–546CrossRefGoogle Scholar
  12. 12.
    Nickel U, Niere J, Zündorf A (2000) The FUJABA environment. In: ICSE’00: Proceedings of the 22nd international conference on software engineering. ACM, New York, pp 742–745Google Scholar
  13. 13.
    Rensink A (2003) The GROOVE simulator: a tool for state space generation. In: Applications of graph transformations with industrial relevance. Lecture notes in computer science, vol 3062, pp 479–485CrossRefGoogle Scholar
  14. 14.
    Balasubramanian D, Narayanan A, van Buskirk CP, Karsai G (2006) The graph rewriting and transformation language: GReAT. In: GraBaTs’06: proceedings of the third international workshop on graph based tools. European Association for the Study of Science and Technology (EASST)Google Scholar
  15. 15.
    Geiß R, Batz GV, Grund D, Hack S, Szalkowski A (2006) GrGen: a fast SPO-based graph rewriting tool. In: Third international conference on graph transformation (ICGT 2006). Lecture notes in computer science, vol 4178, pp 383–397CrossRefGoogle Scholar
  16. 16.
    Plump D (2009) The graph programming language GP. In: CAI 2009. Lecture notes in computer science, vol 5725, pp 99–122CrossRefGoogle Scholar
  17. 17.
    Andersen JL, Flamm C, Merkle D, Stadler PF (2014) Generic strategies for chemical space exploration. Int J Comput Biol Drug Des 7:225–258CrossRefGoogle Scholar
  18. 18.
    Borovanský P, Kirchner C, Kirchner H, Moreau PE, Ringeissen C (1998) An overview of ELAN. Electron Notes Theor Comput Sci 15:55–70CrossRefGoogle Scholar
  19. 19.
    Visser E (2001) Stratego: a language for program transformation based on rewriting strategies. System description of Stratego 0.5. In: Rewriting techniques and applications. Lecture notes in computer science, vol 2051, pp 357–361CrossRefGoogle Scholar
  20. 20.
    Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling. In: CONCUR 2007—concurrency theory. Lecture notes in computer science, vol 4703, pp 17–41CrossRefGoogle Scholar
  21. 21.
    Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110CrossRefGoogle Scholar
  22. 22.
    Boutillier P, Maasha M, Li X, et al (2018) The Kappa platform for rule-based modeling. Bioinformatics 34:i583–i592CrossRefGoogle Scholar
  23. 23.
    Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG (2009) Simulation of large-scale rule-based models. Bioinformatics 25:910–917CrossRefGoogle Scholar
  24. 24.
    Fernández M, Maulat S (2012) Higher-order port-graph rewriting. Electron Proc Theor Comput Sci 101:25–37CrossRefGoogle Scholar
  25. 25.
    Ene NC, Fernández M, Pinaud B (2017) Attributed hierarchical port graphs and applications. Electron Proc Theor Comput Sci 265:2–19CrossRefGoogle Scholar
  26. 26.
    Andrei O, Fernández M, Kirchner H, Melançon G, Namet O, Pinaud B (2011) PORGY: strategy-driven interactive transformation of graphs. Electron Proc Theor Comput Sci 48:54–68CrossRefGoogle Scholar
  27. 27.
    Fernández M, Kirchner H, Pinaud B (2018) Strategic port graph rewriting: an interactive modelling and analysis framework. Math Struct Comput Sci.
  28. 28.
    Pinaud B, Melançon G, Dubois J (2012) PORGY: a visual graph rewriting environment for complex systems. Comput Graph Forum 31:1265–1274CrossRefGoogle Scholar
  29. 29.
    Vallet J, Kirchner H, Pinaud B, Melançon G (2015) A visual analytics approach to compare propagation models in social networks. Electron Proc Theor Comput Sci 181:65–79CrossRefGoogle Scholar
  30. 30.
    Fernández M, Kirchner H, Pinaud B, Vallet J (2016) Labelled graph rewriting meets social networks. In: WRLA 2016. Lecture notes in computer science, vol 9942, pp 1–25CrossRefGoogle Scholar
  31. 31.
    Fernández M, Kirchner H, Pinaud B, Vallet J (2018) Labelled graph strategic rewriting for social networks. J Log Algebr Math Program 96:12–40Google Scholar
  32. 32.
    Auber D, Archambault D, Bourqui R, et al (2014) Tulip III. In: Alhajj R, Rokne J (eds) Encyclopedia of social network analysis and mining. Springer, New YorkGoogle Scholar
  33. 33.
    McCubrey JA, Steelman LS, Chappell WH, et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284CrossRefGoogle Scholar
  34. 34.
    Brown KM, Lee LCY, Findlay JE, Day JP, Baillie GS (2012) Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. FEBS Lett 586:1631–1637CrossRefGoogle Scholar
  35. 35.
    Brown KM, Day JP, Huston E, et al (2013) Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proc Natl Acad Sci USA 110:E1533–E1542CrossRefGoogle Scholar
  36. 36.
    Andrei O, Calder M (2010) A model and analysis of the AKAP scaffold. Electron Notes Theor Comput Sci 268:3–15CrossRefGoogle Scholar
  37. 37.
    Andrei O, Calder M (2012) Trend-based analysis of a population model of the AKAP scaffold protein. In: Transactions on computational systems biology XIV. Lecture notes in computer science, vol 7625, pp 1–25Google Scholar
  38. 38.
    Ferrell JE Jr (2000) What do scaffold proteins really do? Sci STKE 2000:pe1Google Scholar
  39. 39.
    Greenwald EC, Saucerman JJ (2012) Bigger, better, faster: principles and models of AKAP signaling. J Cardiovasc Pharmacol 58:462–469CrossRefGoogle Scholar
  40. 40.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRefGoogle Scholar
  41. 41.
    Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE symposium on visual languages. IEEE, Los Alamitos, pp 336–343Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Oana Andrei
    • 1
  • Maribel Fernández
    • 2
  • Hélène Kirchner
    • 3
  • Bruno Pinaud
    • 4
    Email author
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUK
  2. 2.Department of InformaticsKing’s College LondonLondonUK
  3. 3.Inria Bordeaux Sud-OuestInriaTalenceFrance
  4. 4.University of BordeauxCNRS UMR5800 LaBRITalenceFrance

Personalised recommendations