Skip to main content

CellOrganizer: Learning and Using Cell Geometries for Spatial Cell Simulations

  • Protocol
  • First Online:
Modeling Biomolecular Site Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1945))

Abstract

This chapter describes the procedures necessary to create generative models of the spatial organization of cells directly from microscope images and use them to automatically provide geometries for spatial simulations of cell processes and behaviors. Such models capture the statistical variation in the overall cell architecture as well as the number, shape, size, and spatial distribution of organelles and other structures. The different steps described include preparing images, learning models, evaluating model quality, creating sampled cell geometries by various methods, and combining those geometries with biochemical model specifications to enable simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resasco DC et al (2012) Virtual cell: computational tools for modeling in cell biology. Wiley Interdiscip Rev Syst Biol Med 4(2):129–140

    Article  Google Scholar 

  2. Robinson M, Andrews SS, Erban R (2015) Multiscale reaction-diffusion simulations with Smoldyn. Bioinformatics 31(14):2406–2408

    Article  CAS  Google Scholar 

  3. Kerr RA et al (2008) Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30(6):3126

    Article  Google Scholar 

  4. Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268(5208):247–251

    Article  CAS  Google Scholar 

  5. Huh W-K et al (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    Article  CAS  Google Scholar 

  6. Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124(Pt 20):3381–3392

    Article  CAS  Google Scholar 

  7. Zhao T, Murphy RF (2007) Automated learning of generative models for subcellular location: building blocks for systems biology. Cytometry A 71(12):978–990

    Article  Google Scholar 

  8. Johnson GR et al (2015) Joint modeling of cell and nuclear shape variation. Mol Biol Cell 26(22):4046–4056

    Article  CAS  Google Scholar 

  9. Peng T, Murphy RF (2011) Image-derived, three-dimensional generative models of cellular organization. Cytometry A 79(5):383–391

    Article  Google Scholar 

  10. Li J et al (2012) Estimating microtubule distributions from 2D immunofluorescence microscopy images reveals differences among human cultured cell lines. PLoS One 7(11):e50292

    Article  Google Scholar 

  11. Shariff A, Murphy RF (2011) Automated estimation of microtubule model parameters from 3-D live cell microscopy images. IEEE 11:1330–1333

    Google Scholar 

  12. Shariff A, Murphy RF, Rohde GK (2010) A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images. Cytometry A 77(5):457–466

    PubMed  PubMed Central  Google Scholar 

  13. Afgan E et al (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44(W1):W3–W10

    Article  CAS  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  Google Scholar 

  15. Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32(22):3532–3534

    CAS  PubMed  Google Scholar 

  16. Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. In: Maly VI (ed) Systems Biology. Humana Press, Totowa, NJ, pp 113–167

    Chapter  Google Scholar 

  17. Smith AM et al (2012) RuleBlender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinformatics 13(8):S3

    Google Scholar 

  18. Waltemath D et al (2016) Toward community standards and software for whole-cell modeling. IEEE Trans Biomed Eng 63(10):2007–2014

    Article  Google Scholar 

Download references

Acknowledgments

The original research upon which these protocols are based was supported in part by National Institutes of Health grants R01 GM090033 and P41 GM103712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Majarian, T.D., Cao-Berg, I., Ruan, X., Murphy, R.F. (2019). CellOrganizer: Learning and Using Cell Geometries for Spatial Cell Simulations. In: Hlavacek, W. (eds) Modeling Biomolecular Site Dynamics. Methods in Molecular Biology, vol 1945. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9102-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9102-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9100-6

  • Online ISBN: 978-1-4939-9102-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics