Skip to main content

Isomeric and Conformational Analysis of Small Drug and Drug-Like Molecules by Ion Mobility-Mass Spectrometry (IM-MS)

Part of the Methods in Molecular Biology book series (MIMB,volume 1939)

Abstract

This chapter provides a broad overview of ion mobility-mass spectrometry (IM-MS) and its applications in separation science, with a focus on pharmaceutical applications. A general overview of fundamental ion mobility (IM) theory is provided with descriptions of several contemporary instrument platforms which are available commercially (i.e., drift tube and traveling wave IM). Recent applications of IM-MS toward the evaluation of structural isomers are highlighted and placed in the context of both a separation and characterization perspective. We conclude this chapter with a guided reference protocol for obtaining routine IM-MS spectra on a commercially available uniform-field IM-MS.

Key words

  • Isomers
  • Drugs
  • Conformation
  • Ion mobility spectrometry
  • Ion mobility-mass spectrometry
  • IM-MS

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9089-4_9
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9089-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chail H (2008) DNA sequencing technologies key to the human genome project. Nature Education 1:219

    Google Scholar 

  2. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    CAS  CrossRef  Google Scholar 

  3. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    CAS  CrossRef  Google Scholar 

  4. Takenaka T (2001) Classical vs reverse pharmacology in drug discovery. BJU Int 88:7–10

    CAS  CrossRef  Google Scholar 

  5. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    CAS  CrossRef  Google Scholar 

  6. Vaidya ADB (2014) Reverse pharmacology-a paradigm shift for drug discovery and development. Curr Res Drug Discov 1:39–44

    CrossRef  Google Scholar 

  7. Roses AD (2008) Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov 7:807–817

    CAS  CrossRef  Google Scholar 

  8. Nageswara Rao R, Talluri MV (2007) An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J Pharm Biomed Anal 43:1–13

    CAS  CrossRef  Google Scholar 

  9. Kauppila TJ, Wiseman JM, Ketola RA, Kotiaho T, Cooks RG, Kostiainen R (2006) Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Commun Mass Spectrom 20:387–392

    CAS  CrossRef  Google Scholar 

  10. Cooks RG (1995) Special feature: historical. Collision-induced dissociation: readings and commentary. J Mass Spectrom 30:1215–1221

    CAS  CrossRef  Google Scholar 

  11. Wells JM, McLuckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185

    CAS  CrossRef  Google Scholar 

  12. Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2:85–100

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McMurry J (2008) Organic chemistry, 7th edn. Cengage Learning, Stamford, CT

    Google Scholar 

  14. NCBI.NLM.NIH.Gov. Search terms “C8H9NO2.” Accessed 18 Apr 2017

  15. Ferreres F, Giner JM, Tomás-Barberán FA (1994) A comparative study of hesperetin and methyl anthranilate as markers of the floral origin of citrus honey. J Sci Food Agric 65:371–372

    CAS  CrossRef  Google Scholar 

  16. Groessl M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140:6904–6911

    CAS  CrossRef  Google Scholar 

  17. Xiao Y, Vecchi MM, Wen D (2016) Distinguishing between leucine and isoleucine by integrated LC-MS analysis using Orbitrap fusion mass spectrometer. Anal Chem 88:10757–10766

    CAS  CrossRef  Google Scholar 

  18. Takayama K, Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in mycobacterium smegmatis. Antimicrob Agents Chemother 33:1493–1499

    CAS  CrossRef  Google Scholar 

  19. Chatterjee VK, Buchanan DR, Friedmann AI, Green M (1986) Ocular toxicity following ethambutol in standard dosage. Br J Dis Chest 80:288–291

    CAS  CrossRef  Google Scholar 

  20. Carey R (1996) Organic chemistry, 3rd edn. McGraw Hill, New York, pp 89–92

    Google Scholar 

  21. Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47

    CrossRef  Google Scholar 

  22. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldórsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86:3985–3993

    CAS  CrossRef  Google Scholar 

  23. Enders JR, McLean JA (2009) Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility –mass spectrometry. Chirality 21:253–264

    CrossRef  Google Scholar 

  24. Dodds JN, May JC, McLean JA (2017) Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal Chem 89:952–959

    CAS  CrossRef  Google Scholar 

  25. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12

    CAS  CrossRef  Google Scholar 

  26. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436

    CAS  CrossRef  Google Scholar 

  27. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Ruwam T, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86:2107–2116

    CAS  CrossRef  Google Scholar 

  28. Web of Science. Thomson Reuters. Search terms “Ion Mobility” AND “Mass Spectrometry.” Articles from 2002 to 2017. Accessed 15 May 2017

    Google Scholar 

  29. Paglia G, Astarita G (2017) Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc 12:797–813

    CAS  CrossRef  Google Scholar 

  30. Stow SM, Lareau NM, Hines KM, McNees CR, Goodwin CR, Bachmann BO, McLean JA (2014) In: Havlíček V, Spížek J (eds) Natural products analysis: instrumentation, methods, and applications. John Wiley & Sons, Inc., Hoboken, NJ, pp 397–432

    Google Scholar 

  31. Sundarapandian S, May JC, McLean JA (2010) Dual source ion mobility mass-spectrometer for direct comparison of ESI and MALDI collision cross section measurements. Anal Chem 82:3247–3254

    CAS  CrossRef  Google Scholar 

  32. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. John Wiley and Sons, Indianapolis, IN

    CrossRef  Google Scholar 

  33. Glaskin RS, Valentine SJ, Clemmer DE (2010) A scanning frequency mode for ion cyclotron mobility spectrometry. Anal Chem 82:8266–8271

    CAS  CrossRef  Google Scholar 

  34. Cumeras R, Figueras E, Davis CE, Baumbach JI, Grácia I (2015) Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140:1376–1390

    CAS  CrossRef  Google Scholar 

  35. Cumeras R, Figueras E, Davis CE, Baumbach JI, Grácia I (2015) Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 140:1391–1410

    CAS  CrossRef  Google Scholar 

  36. Adamov A, Mauriala T, Teplov V, Laakia J, Pedersen CS, Kotiaho T, Sysoev AA (2010) Characterization of a high resolution drift tube ion mobility spectrometer with a multi-ion source platform. Int J Mass Spectrom 298:24–29

    CAS  CrossRef  Google Scholar 

  37. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility–mass spectrometry. J Mass Spectrom 43:1–22

    CAS  CrossRef  Google Scholar 

  38. Jurneczko E, Kalapothakis J, Campuzano ID, Morris M, Barran PE (2012) Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry. Anal Chem 84:8524–8531

    CAS  CrossRef  Google Scholar 

  39. Ujma J, Giles K, Morris M, Barran PE (2016) New high resolution ion mobility mass spectrometer capable of measurements of collision cross sections from 150 to 520 K. Anal Chem 88:9469–9478

    CAS  CrossRef  Google Scholar 

  40. Giles K, Williams JP, Campuzano I (2011) Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom 25:1559–1566

    CAS  CrossRef  Google Scholar 

  41. Shvartsburg AA, Smith RD (2008) Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80:9689–9699

    CAS  CrossRef  Google Scholar 

  42. Bush MF, Campuzano ID, Robinson CV (2012) Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84:7124–7130

    CAS  CrossRef  Google Scholar 

  43. Hines KM, May JC, McLean JA, Xu L (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88:7329–7336

    CAS  CrossRef  Google Scholar 

  44. Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6:281–294

    CAS  CrossRef  Google Scholar 

  45. May JC, McLean JA (2015) A uniform field ion mobility of melittin and implications of low-field mobility for resolving fine cross-sectional detail in peptide and protein experiments. Proteomics 15:2862–2871

    CAS  CrossRef  Google Scholar 

  46. Shvartsburg AA, Tang K, Smith RD (2009) Two-dimensional ion mobility analyses of proteins and peptides. Methods Mol Biol 492:417–445

    CAS  CrossRef  Google Scholar 

  47. Kilman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structually selective ion mobility-mass spectrometry. Biochimica et Biophusica Acta (BBA)-Molecular and Cell Biology of Lipids 1811:935–945

    CrossRef  Google Scholar 

  48. Gaye MM, Nagy G, Clemmer DE, Pohl NL (2016) Multidimensional analysis of 16 glucose isomers by ion mobility spectrometry. Anal Chem 88:2335–2344

    CAS  CrossRef  Google Scholar 

  49. Fenn LS, McLean JA (2013) Structural separations by ion mobility-MS for glycomics and glycoproteomics. Methods Mol Biol 951:171–194

    CAS  CrossRef  Google Scholar 

  50. Lalli PM, Corilo YE, Rowland SM, Marshall AG, Rodgers RP (2015) Isomeric separation and structural characterization of acids in petroleum by ion mobility mass spectrometry. Energy Fuel 29:3626–3633

    CAS  CrossRef  Google Scholar 

  51. Barnett DA, Ells B, Guevremont R, Purves RW (1999) Separation of leucine and isoleucine by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. J Am Chem Soc 10:1279–1284

    CAS  Google Scholar 

  52. Knapman TW, Berryman JT, Campuzano I, Harris SA, Ashcroft AE (2010) Considerations in experimental and theoretical collision cross-section measurements of small molecules using travelling wave ion mobility spectrometry-mass spectrometry. Int J Mass Spectrom 298:17–23

    CAS  CrossRef  Google Scholar 

  53. Li H, Bendiak B, Siems WF, Gang DR, Hill HH Jr (2013) Ion mobility mass spectrometry analysis of isomeric disaccharide precursor, product and cluster ions. Rapid Commun Mass Spectrom 27:2699–2709

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported in part using the resources of the Center for Innovative Technology at Vanderbilt University. Financial support for aspects of this research was provided by The National Institutes of Health (NIH Grant R01GM092218) and under Assistance Agreement No. 83573601 awarded by the US Environmental Protection Agency (EPA). This work has not been formally reviewed by the EPA, and the EPA does not endorse any products or commercial services mentioned in this publication. Furthermore, the content is solely the responsibility of the authors and should not be interpreted as representing the official views and policies, either expressed or implied, of the funding agencies and organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. McLean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Phillips, S.T., Dodds, J.N., May, J.C., McLean, J.A. (2019). Isomeric and Conformational Analysis of Small Drug and Drug-Like Molecules by Ion Mobility-Mass Spectrometry (IM-MS). In: Larson, R., Oprea, T. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 1939. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9089-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9089-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9088-7

  • Online ISBN: 978-1-4939-9089-4

  • eBook Packages: Springer Protocols