Advertisement

Whole-Cell Patch-Clamp Electrophysiology to Study Ionotropic Glutamatergic Receptors and Their Roles in Addiction

  • Jonna M. Leyrer-JacksonEmail author
  • M. Foster Olive
  • Cassandra D. Gipson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1941)

Abstract

Development of the whole-cell patch-clamp electrophysiology technique has allowed for enhanced visualization and experimentation of ionic currents in neurons of mammalian tissue with high spatial and temporal resolution. Electrophysiology has become an exceptional tool for identifying single cellular mechanisms underlying behavior. Specifically, the role of glutamatergic signaling through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors underlying behavior has been extensively studied. Here we will discuss commonly used protocols and techniques for performing whole-cell patch-clamp recordings and exploring AMPA and NMDA receptor-mediated glutamatergic responses and alterations in the context of substance abuse.

Key words

Electrophysiology Addiction Patch clamp AMPA NMDA Substance abuse Glutamatergic receptors 

Notes

Acknowledgments

This work was funded by DA036569 (CDG) and AA025590 and DA042172 (MFO).

References

  1. 1.
    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126CrossRefGoogle Scholar
  2. 2.
    Lu W, Shi Y, Jackson AC et al (2009) Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62:254–268CrossRefGoogle Scholar
  3. 3.
    Martin LJ, Blackstone CD, Levey AI et al (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53:327–358CrossRefGoogle Scholar
  4. 4.
    Schwenk J, Baehrens D, Haupt A et al (2014) Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron 84:41–54CrossRefGoogle Scholar
  5. 5.
    Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713CrossRefGoogle Scholar
  6. 6.
    Sommer B, Keinänen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585CrossRefGoogle Scholar
  7. 7.
    Geiger JR, Melcher T, Koh DS et al (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204CrossRefGoogle Scholar
  8. 8.
    Abraham WC, Huggett A (1997) Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. Hippocampus 7:137–145CrossRefGoogle Scholar
  9. 9.
    Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048CrossRefGoogle Scholar
  10. 10.
    Madison DV, Malenka RC, Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci 14:379–397CrossRefGoogle Scholar
  11. 11.
    Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381–390CrossRefGoogle Scholar
  12. 12.
    Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann N Y Acad Sci 1003:1–11CrossRefGoogle Scholar
  13. 13.
    Dong Y, Nestler EJ (2014) The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol Sci 35:374–383CrossRefGoogle Scholar
  14. 14.
    Lüscher C, Xia H, Beattie EC et al (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24:649–658CrossRefGoogle Scholar
  15. 15.
    Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588CrossRefGoogle Scholar
  16. 16.
    Derkach VA, Oh MC, Guire ES et al (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113CrossRefGoogle Scholar
  17. 17.
    Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496CrossRefGoogle Scholar
  18. 18.
    Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  19. 19.
    Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335CrossRefGoogle Scholar
  20. 20.
    Flint AC, Maisch US, Weishaupt JH et al (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17:2469–2476CrossRefGoogle Scholar
  21. 21.
    Sun W, Hansen KB, Jahr CE (2017) Allosteric interactions between NMDA receptor subunits shape the developmental shift in channel properties. Neuron 94:58–64CrossRefGoogle Scholar
  22. 22.
    Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696CrossRefGoogle Scholar
  23. 23.
    Angulo MC, Kozlov AS, Charpak S et al (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24:6920–6927CrossRefGoogle Scholar
  24. 24.
    Fellin T, Pascual O, Gobbo S et al (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743CrossRefGoogle Scholar
  25. 25.
    Papouin T, Ladépêche L, Ruel J et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646CrossRefGoogle Scholar
  26. 26.
    Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858CrossRefGoogle Scholar
  27. 27.
    Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5:20–25CrossRefGoogle Scholar
  28. 28.
    Jackson A, Mead AN, Stephens DN (2000) Behavioural effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-receptor antagonists and their relevance to substance abuse. Pharmacol Ther 88:59–76CrossRefGoogle Scholar
  29. 29.
    Kelley AE, Andrzejewski ME, Baldwin AE et al (2003) Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Ann N Y Acad Sci 1003:159–168CrossRefGoogle Scholar
  30. 30.
    Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720CrossRefGoogle Scholar
  31. 31.
    González-Burgos G, Barrionuevo G (2001) Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. J Neurophysiol 86:1671–1684CrossRefGoogle Scholar
  32. 32.
    Rotaru DC, Lewis DA, González-Burgos G (2007) Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. J Physiol 581:981–1000CrossRefGoogle Scholar
  33. 33.
    Little JP, Carter AG (2012) Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J Neuroscience 32:12808–12819CrossRefGoogle Scholar
  34. 34.
    Ji G, Neugebauer V (2012) Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 5:36CrossRefGoogle Scholar
  35. 35.
    Naiche LA, Papaioannou VE (2007) Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 45:768–775CrossRefGoogle Scholar
  36. 36.
    Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165CrossRefGoogle Scholar
  37. 37.
    Ungless MA, Whistler JL, Malenka RC et al (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587CrossRefGoogle Scholar
  38. 38.
    Stefanik MT, Kupchik YM, Kalivas PW (2016) Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior. Brain Struct Funct 221:1681–1689CrossRefGoogle Scholar
  39. 39.
    Creed M, Pascoli VJ, Lüscher C (2015) Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347:659–664CrossRefGoogle Scholar
  40. 40.
    Karler R, Calder LD, Chaudhry IA et al (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci 45:599–606CrossRefGoogle Scholar
  41. 41.
    Gipson CD, Kupchik YM, Shen H et al (2013) Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron 77:867–872CrossRefGoogle Scholar
  42. 42.
    Huang YH, Lin Y, Mu P et al (2009) In vivo cocaine experience generates silent synapses. Neuron 63:40–47CrossRefGoogle Scholar
  43. 43.
    Conrad KL, Tseng KY, Uejima JL et al (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121CrossRefGoogle Scholar
  44. 44.
    Russo SJ, Dietz DM, Dumitriu D et al (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33:267–276CrossRefGoogle Scholar
  45. 45.
    Petralia RS (2012) Distribution of extrasynaptic NMDA receptors on neurons. Scientific World Journal Article ID 267120Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jonna M. Leyrer-Jackson
    • 1
    Email author
  • M. Foster Olive
    • 1
  • Cassandra D. Gipson
    • 1
  1. 1.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations