Considerations for Imaging and Analyzing Neural Structures by STED Microscopy

  • Martin O. Lenz
  • Jan TønnesenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1941)


STED microscopy images of live or fixed brain tissue contain a wealth of geometric information about cellular structures down to the scale of individual dendritic spines and axonal structures. To extract such morphological data in a credible way, several considerations regarding image acquisition and analysis must be taken into account. This chapter highlights the parameters of primary importance for acquiring and analyzing STED images and interpreting STED microscopy data.

Key words

STED Image analysis Dendritic spines Fluorescence microscopy Live cell imaging Super-resolution 



JT is supported by grants from the Spanish Ministry of Economy and Competitiveness (RYC-2014-15994 and SAF2017-83776-R).


  1. 1.
    Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci 97:8206–8210CrossRefGoogle Scholar
  2. 2.
    Abbe E (1882) The relation of aperture and power in the microscope. J R Microsc Soc 2:300–309CrossRefGoogle Scholar
  3. 3.
    Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705CrossRefGoogle Scholar
  4. 4.
    Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661CrossRefGoogle Scholar
  5. 5.
    Mishchenko Y, Hu T, Spacek J et al (2010) Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67:1009–1020CrossRefGoogle Scholar
  6. 6.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  7. 7.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795CrossRefGoogle Scholar
  8. 8.
    Urban NT, Willig KI, Hell SW et al (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:1277–1284CrossRefGoogle Scholar
  9. 9.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175CrossRefGoogle Scholar
  10. 10.
    Wildanger D, Medda R, Kastrup L et al (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43CrossRefGoogle Scholar
  11. 11.
    Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092CrossRefGoogle Scholar
  12. 12.
    Noguchi J, Matsuzaki M, Ellis-Davies GCR et al (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46:609–622CrossRefGoogle Scholar
  13. 13.
    Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551CrossRefGoogle Scholar
  14. 14.
    Willig KI, Steffens H, Gregor C et al (2014) Nanoscopy of filamentous actin in cortical dendrites of a living mouse. Biophys J 106:L01–L03CrossRefGoogle Scholar
  15. 15.
    Whelan DR, Bell TDM (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924CrossRefGoogle Scholar
  16. 16.
    Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124:1607–1611CrossRefGoogle Scholar
  17. 17.
    Korogod N, Petersen CCH, Knott GW (2015) Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4.
  18. 18.
    Rittweger E, Rankin BR, Westphal V et al (2007) Fluorescence depletion mechanisms in super-resolving STED microscopy. Chem Phys Lett 442:483–487CrossRefGoogle Scholar
  19. 19.
    Einstein A (1917) Zur Quantentheorie der Strahlung. Phys Z 18:121–128Google Scholar
  20. 20.
    Tønnesen J, Inavalli VVGK, Nägerl UV (2018) Super-resolution imaging of the extracellular space in living brain tissue. Cell 172:1108–1121.e15CrossRefGoogle Scholar
  21. 21.
    Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903CrossRefGoogle Scholar
  22. 22.
    Tonnesen J, Nagerl UV (2013) Two-color STED imaging of synapses in living brain slices. Methods Mol Biol 950:65–80PubMedGoogle Scholar
  23. 23.
    Harke B, Keller J, Ullal CK et al (2008) Resolution scaling in STED microscopy. Opt Express 16:4154–4162CrossRefGoogle Scholar
  24. 24.
    Tønnesen J, Nadrigny F, Willig KI et al (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101(10):2545–2552CrossRefGoogle Scholar
  25. 25.
    Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–L69CrossRefGoogle Scholar
  26. 26.
    Bottanelli F, Kromann EB, Allgeyer ES et al (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7:10778CrossRefGoogle Scholar
  27. 27.
    Pellett PA, Sun X, Gould TJ et al (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2:2364–2371CrossRefGoogle Scholar
  28. 28.
    Bückers J, Wildanger D, Vicidomini G et al (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19:3130–3143CrossRefGoogle Scholar
  29. 29.
    Lenz MO, Brown ACN, Auksorius E, et al 2011 A STED-FLIM microscope applied to imaging the natural killer cell immune synapse. Proc. SPIE 7903, Multiphoton microscopy in the biomedical sciences XI, p. 79032DGoogle Scholar
  30. 30.
    Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546:87–92CrossRefGoogle Scholar
  31. 31.
    Cole RW, Jinadasa T, Brown CM (2011) Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nat Protoc 6:1929–1941CrossRefGoogle Scholar
  32. 32.
    White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48CrossRefGoogle Scholar
  33. 33.
    Chéreau R, Tønnesen J, Nägerl UV (2015) STED microscopy for nanoscale imaging in living brain slices. Methods 88:57–66CrossRefGoogle Scholar
  34. 34.
    Zhang B, Zerubia J, Olivo-Marin J-C (2007) Gaussian approximations of fluorescence microscope point-spread function models. Appl Opt 46:1819–1829CrossRefGoogle Scholar
  35. 35.
    Bethge P, Chéreau R, Avignone E et al (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104:778–785CrossRefGoogle Scholar
  36. 36.
    Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777CrossRefGoogle Scholar
  37. 37.
    Wegner W, Ilgen P, Gregor C et al (2017) In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci Rep 7:11781CrossRefGoogle Scholar
  38. 38.
    Wijetunge LS, Angibaud J, Frick A et al (2014) Stimulated emission depletion (STED) microscopy reveals nanoscale defects in the developmental trajectory of dendritic spine morphogenesis in a mouse model of fragile X syndrome. J Neurosci 34:6405–6412CrossRefGoogle Scholar
  39. 39.
    Lenz MO, Sinclair HG, Savell A et al (2014) 3-D stimulated emission depletion microscopy with programmable aberration correction. J Biophotonics 7:29–36CrossRefGoogle Scholar
  40. 40.
    Zucker RM, Rigby P, Clements I et al (2007) Reliability of confocal microscopy spectral imaging systems: use of multispectral beads. Cytom Part J Int Soc Anal Cytol 71:174–189CrossRefGoogle Scholar
  41. 41.
    Boutet de Monvel J, Le Calvez S, Ulfendahl M (2001) Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys J 80:2455–2470CrossRefGoogle Scholar
  42. 42.
    McNally JG, Karpova T, Cooper J et al (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19:373–385CrossRefGoogle Scholar
  43. 43.
    Zanella R, Zanghirati G, Cavicchioli R et al (2013) Towards real-time image deconvolution: application to confocal and STED microscopy. Sci Rep 3:2523CrossRefGoogle Scholar
  44. 44.
    Chéreau R, Saraceno GE, Angibaud J et al (2017) Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity. Proc Natl Acad Sci U S A 114:1401–1406CrossRefGoogle Scholar
  45. 45.
    Neumann D, Bückers J, Kastrup L et al (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3:4CrossRefGoogle Scholar
  46. 46.
    Göttfert F, Wurm CA, Mueller V et al (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03CrossRefGoogle Scholar
  47. 47.
    Swanger SA, Yao X, Gross C et al (2011) Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model. Mol Brain 4:38CrossRefGoogle Scholar
  48. 48.
    Tønnesen J, Katona G, Rózsa B et al (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeUK
  2. 2.Achucarro Basque Center for NeuroscienceLeioaSpain
  3. 3.Department of Neurosciences, Faculty of Medicine and DentistryUniversity of the Basque Country (UPV/EHU)LeioaSpain

Personalised recommendations