Fractionation of Subcellular Compartments from Human Brain Tissue

  • Toni M. MuellerEmail author
  • Pitna Kim
  • James H. Meador-Woodruff
Part of the Methods in Molecular Biology book series (MIMB, volume 1941)


Subcellular fractionation methods permit the isolation, purification, and/or enrichment of specific cellular compartments from complex tissue samples. Enrichment of multiple subcellular compartments from the same tissue sample permits comparisons of the spatial distribution of target proteins between specific intracellular compartments and, in some cases, can provide information about spatiotemporal processing of key cellular components. Here we describe a method to generate subcellular fractions enriched for heavy membranes and nuclei, rough and smooth endoplasmic reticulum membranes, light membranes and cytosol, synapses, and other intermediate cellular membranes from postmortem human brain tissue. These subcellular fractions can be used in a variety of downstream applications to assess the localization, relative abundance, and stoichiometry of glutamate receptor subunits along the forward trafficking pathway.

Key words

Density gradient separation Differential centrifugation Triton X-100 solubilization Forward trafficking pathway Subcellular localization 


  1. 1.
    Herguedas B, Krieger J, Greger IH (2013) Receptor heteromeric assembly—how it works and why it matters: the case of ionotropic glutamate receptors. Prog Mol Biol Transl Sci 117:361–386. CrossRefPubMedGoogle Scholar
  2. 2.
    Penn AC, Williams SR, Greger IH (2008) Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. EMBO J 27:3056–3068. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Straub C, Tomita S (2012) The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol 22:488–495. CrossRefPubMedGoogle Scholar
  4. 4.
    Jiang J, Suppiramaniam V, Wooten MW (2007) Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity. Neurosignals 15:266–282. CrossRefGoogle Scholar
  5. 5.
    Keith D, El-Husseini A (2008) Excitation control: balancing PSD-95 function at the synapse. Front Mol Neurosci 1:4. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brown TC, Correia SS, Petrok CN, Esteban JA (2007) Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. J Neurosci 27:13311–13315. CrossRefPubMedGoogle Scholar
  7. 7.
    Fernandez-Monreal M, Brown TC, Royo M, Esteban JA (2012) The balance between receptor recycling and trafficking toward lysosomes determines synaptic strength during long-term depression. J Neurosci 32:13200–13205. CrossRefPubMedGoogle Scholar
  8. 8.
    Lu W, Roche KW (2012) Posttranslational regulation of AMPA receptor trafficking and function. Curr Opin Neurobiol 22:470–479. CrossRefPubMedGoogle Scholar
  9. 9.
    Goo MS, Scudder SL, Patrick GN (2015) Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors. Front Mol Neurosci 8:60. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Standley S, Baudry M (2000) The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cell Mol Life Sci 57:1508–1516. CrossRefPubMedGoogle Scholar
  11. 11.
    Llansola M, Sanchez-Perez A, Cauli O, Felipo V (2005) Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 4:154–161. CrossRefPubMedGoogle Scholar
  12. 12.
    Everts I, Villmann C, Hollmann M (1997) N-glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol Pharmacol 52:861–873CrossRefGoogle Scholar
  13. 13.
    Vandenberghe W, Bredt DS (2004) Early events in glutamate receptor trafficking. Curr Opin Cell Biol 16:134–139. CrossRefPubMedGoogle Scholar
  14. 14.
    Mueller TM, Remedies CE, Haroutunian V, Meador-Woodruff JH (2015) Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain. Transl Psychiatry 5:e612. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Toni M. Mueller
    • 1
    Email author
  • Pitna Kim
    • 1
  • James H. Meador-Woodruff
    • 1
  1. 1.Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations