Advertisement

Single-Molecule FRET Methods to Study Glutamate Receptors

  • Douglas B. Litwin
  • Ryan J. Durham
  • Vasanthi JayaramanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1941)

Abstract

Single-molecule fluorescence energy transfer methods allow us to determine the complete structural landscape between the donor and acceptor fluorophores introduced on the protein of interest. This method is particularly attractive to study ion channel proteins as single-molecule current recordings have been used to study the function of these proteins for several decades. Here we describe the smFRET method used to study glutamate receptors.

Key words

Single-molecule FRET Fluorescence NMDA receptor Glutamate receptor 

Notes

Acknowledgments

This project was supported by NIH grants R35GM122528 (VJ) and F31GM130035 (RJD) and by the Houston Area Molecular Biophysics Training Program NIH- 2T32 GM008280-26 (DBL).

References

  1. 1.
    Sirrieh RE, MacLean DM, Jayaraman V (2015) A conserved structural mechanism of NMDA receptor inhibition: a comparison of ifenprodil and zinc. J Gen Physiol 146(2):173–181CrossRefGoogle Scholar
  2. 2.
    MacLean DM, Ramaswamy SS, Du M, Howe JR, Jayaraman V (2014) Stargazin promotes closure of the AMPA receptor ligand-binding domain. J Gen Physiol 144(6):503–512CrossRefGoogle Scholar
  3. 3.
    Ramaswamy S, Cooper D, Poddar N et al (2012) Role of conformational dynamics in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor partial agonism. J Biol Chem 287(52):43557–43564CrossRefGoogle Scholar
  4. 4.
    Shaikh SA, Dolino DM, Lee G et al (2016) Stargazin modulation of AMPA receptors. Cell Rep 17(2):328–335CrossRefGoogle Scholar
  5. 5.
    Dolino DM, Chatterjee S, MacLean DM et al (2017) The structure-energy landscape of NMDA receptor gating. Nat Chem Biol 13:1232–1238CrossRefGoogle Scholar
  6. 6.
    Baker KA, Lamichhane R, Lamichhane T, Rueda D, Cunningham PR (2016) Protein–RNA dynamics in the central junction control 30S ribosome assembly. J Mol Biol 428(18):3615–3631CrossRefGoogle Scholar
  7. 7.
    Bal M, Zaika O, Martin P, Shapiro MS (2008) Calmodulin binding to M-type K+ channels assayed by TIRF/FRET in living cells. J Physiol 586(9):2307–2320CrossRefGoogle Scholar
  8. 8.
    Dolino DM, Rezaei Adariani S, Shaikh SA, Jayaraman V, Sanabria H (2016) Conformational selection and submillisecond dynamics of the ligand-binding domain of the N-Methyl-d-aspartate receptor. J Biol Chem 291(31):16175–16185CrossRefGoogle Scholar
  9. 9.
    Gomes G-N, Gradinaru CC (2017) Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence. Biochim Biophys Acta Proteins Proteom 1865(11 Pt B):1696–1706CrossRefGoogle Scholar
  10. 10.
    Gouridis G, Schuurman-Wolters GK, Ploetz E et al (2015) Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat Struct Mol Biol 22(1):57–64CrossRefGoogle Scholar
  11. 11.
    Kempe D, Cerminara M, Poblete S, Schöne A, Gabba M, Fitter J (2017) Single-molecule FRET measurements in additive-enriched aqueous solutions. Anal Chem 89(1):694–702CrossRefGoogle Scholar
  12. 12.
    Kim J-Y, Kim C, Lee NK (2015) Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nat Commun 6:6992CrossRefGoogle Scholar
  13. 13.
    Martinac B (2017) Single-molecule FRET studies of ion channels. Prog Biophys Mol Biol 130(Pt B):192–197CrossRefGoogle Scholar
  14. 14.
    McLoughlin SY, Kastantin M (2013) Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proc Natl Acad Sci U S A 110(48):19396–19401CrossRefGoogle Scholar
  15. 15.
    Song C-X, Diao J, Brunger AT, Quake SR (2016) Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation. Proc Natl Acad Sci U S A 113(16):4338–4343CrossRefGoogle Scholar
  16. 16.
    Stockmar F, Kobitski AY, Nienhaus GU (2016) Fast folding dynamics of an intermediate state in RNase H measured by single-molecule FRET. J Phys Chem B 120(4):641–649CrossRefGoogle Scholar
  17. 17.
    Wang S, Vafabakhsh R, Borschel WF, Ha T, Nichols CG (2016) Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Nat Struct Mol Biol 23(1):31–36CrossRefGoogle Scholar
  18. 18.
    Wang Y, Liu Y, DeBerg HA et al (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. elife 3:e01834CrossRefGoogle Scholar
  19. 19.
    Warhaut S, Mertinkus KR, Höllthaler P et al (2017) Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res 45(9):5512–5522CrossRefGoogle Scholar
  20. 20.
    Landes CF, Rambhadran A, Taylor JN, Salatan F, Jayaraman V (2011) Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nat Chem Biol 7(3):168–173CrossRefGoogle Scholar
  21. 21.
    Cooper DR, Dolino DM, Jaurich H et al (2015) Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET. Biophys J 109(1):66–75CrossRefGoogle Scholar
  22. 22.
    Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516CrossRefGoogle Scholar
  23. 23.
    Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–513CrossRefGoogle Scholar
  24. 24.
    Lü W, Du J, Goehring A, Gouaux E (2017) Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355(6331):eaal3729CrossRefGoogle Scholar
  25. 25.
    Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI (2017) Structural bases of desensitization in AMPA receptor-auxiliary subunit complexes. Neuron 94(3):569–580CrossRefGoogle Scholar
  26. 26.
    Ye S, Köhrer C, Huber T et al (2008) Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J Biol Chem 283(3):1525–1533CrossRefGoogle Scholar
  27. 27.
    Dolino DM, Cooper D, Ramaswamy S, Jaurich H, Landes CF, Jayaraman V (2015) Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor. J Biol Chem 290(2):797–804CrossRefGoogle Scholar
  28. 28.
    McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91(5):1941–1951CrossRefGoogle Scholar
  29. 29.
    Shuang B, Cooper D, Taylor JN et al (2014) Fast step transition and state identification (STaSI) for discrete single-molecule data analysis. J Phys Chem Lett 5(18):3157–3161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Douglas B. Litwin
    • 1
  • Ryan J. Durham
    • 1
  • Vasanthi Jayaraman
    • 1
    Email author
  1. 1.Center for Membrane Biology, Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations