Advertisement

Astrocytes pp 97-104 | Cite as

Cisterna Magna Injection in Rats to Study Glymphatic Function

  • Marta Ramos
  • Nicholas Burdon Bechet
  • Roberta Battistella
  • Chiara Pavan
  • Anna L. R. Xavier
  • Maiken Nedergaard
  • Iben LundgaardEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)

Abstract

The recently discovered glymphatic system, which supports brain-wide clearance of metabolic waste, has become the subject of intense research within the past few years. Its nomenclature arose due to its functionally analogous nature to the lymphatic system in combination with glial cells that are part of its anatomical boundaries. The influx of cerebrospinal fluid (CSF) from perivascular spaces into the brain interstitium acts to clear intraparenchymal solutes. CSF is produced by the choroid plexus and flows from the ventricles to the subarachnoid space via the cisterna magna, and as such the injection of tracer molecules into any one of these spaces could be used for studying CSF movement through the glymphatic system. Of these options, the cisterna magna is most favorable as it offers a route of entry that does not involve craniotomy. Herein we describe the cisterna magna (CM) injection procedure carried out in rats, essential for studying glymphatic influx and efflux dynamics.

Key words

Glymphatic system Cisterna magna injection Cerebrospinal fluid Tracer 

Notes

Acknowledgements

The Knut and Alice Wallenberg Foundation is acknowledged for generous support.

References

  1. 1.
    Liao S, Padera TP (2013) Lymphatic function and immune regulation in health and disease. Lymphat Res Biol 11:136–143CrossRefGoogle Scholar
  2. 2.
    Cumming P, Ase A, Diksic M et al (1995) Metabolism and blood-brain clearance of l-3,4-dihydroxy-[3H]phenylalanine ([3H]DOPA) and 6-[18F]fluoro-l-DOPA in the rat. Biochem Pharmacol 50:943–946CrossRefGoogle Scholar
  3. 3.
    Shram N, Netchiporouk L, Cespuglio R (2002) Lactate in the brain of the freely moving rat: Voltammetric monitoring of the changes related to the sleep-wake states. Eur J Neurosci 16:461–466CrossRefGoogle Scholar
  4. 4.
    Nedergaard M (2013) Garbage truck of the brain. Science 340:1529–1530CrossRefGoogle Scholar
  5. 5.
    Jessen NA, Munk ASF, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599CrossRefGoogle Scholar
  6. 6.
    Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid–cerebrospinal fluid exchange, amyloid-β, and sleep. Biol Psychiatry 83:328–336CrossRefGoogle Scholar
  7. 7.
    Mestre H, Kress BT, Zou W et al (2017) Aquaporin-4 dependent glymphatic solute transport in rodent brain. bioRxiv 216499Google Scholar
  8. 8.
    Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861CrossRefGoogle Scholar
  9. 9.
    Lundgaard I, Lu ML, Yang E et al (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124CrossRefGoogle Scholar
  10. 10.
    Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111CrossRefGoogle Scholar
  11. 11.
    Nagelhus EA, Ottersen OP (2013) Physiological roles of Aquaporin-4 in brain. Physiol Rev 93:1543–1562CrossRefGoogle Scholar
  12. 12.
    Solenov E (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:426C–4432CCrossRefGoogle Scholar
  13. 13.
    Huber VJ, Igarashi H, Ueki S et al (2018) Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood–brain barrier. Neuroreport 29:697–703CrossRefGoogle Scholar
  14. 14.
    Xavier ALR, Hauglund NL, von Holstein-Rathlou S et al (2018) Cannula implantation into the cisterna magna of rodents. J Vis Exp 135:e57378Google Scholar
  15. 15.
    Yang L, Kress BT, Weber HJ et al (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107CrossRefGoogle Scholar
  16. 16.
    Xie L, Xie L, Kang H et al (2013) From the adult. Brain 373:373–378Google Scholar
  17. 17.
    Groothuis DR, Vavra MW, Schlageter KE et al (2007) Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab 27:43–56CrossRefGoogle Scholar
  18. 18.
    Benveniste H, Lee H, Ding F et al (2017) Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology 127:976–988CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marta Ramos
    • 1
  • Nicholas Burdon Bechet
    • 1
  • Roberta Battistella
    • 1
  • Chiara Pavan
    • 2
  • Anna L. R. Xavier
    • 2
  • Maiken Nedergaard
    • 3
    • 4
  • Iben Lundgaard
    • 1
    Email author
  1. 1.Department of Experimental Medical Science and Wallenberg Center for Molecular MedicineLund UniversityLundSweden
  2. 2.Center for Translational Neuromedicine, Division of Glial TherapeuticsUniversity of CopenhagenCopenhagenDenmark
  3. 3.Center for Basic and Translational NeuroscienceUniversity of Copenhagen, DK-2200CopenhagenDenmark
  4. 4.Center for Translational Neuromedicine, Department of NeurosurgeryUniversity of RochesterRochesterUSA

Personalised recommendations