Astrocytes pp 69-84 | Cite as

A Method to Visualize the Nanoscopic Morphology of Astrocytes In Vitro and In Situ

  • Janosch P. HellerEmail author
  • Dmitri A. RusakovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)


In recent years it has become apparent that astroglia are not only essential players in brain development, homeostasis, and metabolic support but are also important for the formation and regulation of synaptic circuits. Fine astrocytic processes that can be found in the vicinity of synapses undergo considerable structural plasticity associated with age- and use-dependent changes in neural circuitries. However, due to the extraordinary complex, essentially nanoscopic morphology of astroglia, the underlying cellular mechanisms remain poorly understood.

Here we detail a super-resolution microscopy approach, based on the single-molecule localisation microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM) to visualize astroglial morphology on the nanoscale. This approach enables visualization of key morphological changes that occur in nanoscopic astrocyte processes, whose characteristic size falls below the diffraction limit of conventional optical microscopy.

Key words

Super-resolution microscopy SMLM dSTORM Brain tissue fixation Tissue sectioning Immunohistochemistry Astrocytes 



The authors thank Dr. Piotr Michaluk for cell culture preparations. This research was supported by Wellcome Trust Principal Fellowship (101896), European Research Council Advanced Grant (323113-NETSIGNAL), FP7 ITN (606950 EXTRABRAIN), and Russian Science Foundation grant (15-14-30000).


  1. 1.
    Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946. Scholar
  2. 2.
    Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355CrossRefGoogle Scholar
  3. 3.
    Seifert G, Carmignoto G, Steinhauser C (2010) Astrocyte dysfunction in epilepsy. Brain Res Rev 63(1–2):212–221CrossRefGoogle Scholar
  4. 4.
    Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4(3):e00082CrossRefGoogle Scholar
  5. 5.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640CrossRefGoogle Scholar
  6. 6.
    Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189CrossRefGoogle Scholar
  7. 7.
    Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952CrossRefGoogle Scholar
  8. 8.
    Rusakov DA (2015) Disentangling calcium-driven astrocyte physiology. Nat Rev Neurosci 16(4):226–233CrossRefGoogle Scholar
  9. 9.
    Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 63(12):2133–2151CrossRefGoogle Scholar
  10. 10.
    Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739CrossRefGoogle Scholar
  11. 11.
    Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2):e00080CrossRefGoogle Scholar
  12. 12.
    Rusakov DA, Bard L, Stewart MG, Henneberger C (2014) Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci 37(4):228–242CrossRefGoogle Scholar
  13. 13.
    Bernardinelli Y, Randall J, Janett E, Nikonenko I, Konig S, Jones EV, Flores CE, Murai KK, Bochet CG, Holtmaat A, Muller D (2014) Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 24(15):1679–1688CrossRefGoogle Scholar
  14. 14.
    Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35):8881–8891CrossRefGoogle Scholar
  15. 15.
    Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20(8):2235–2239CrossRefGoogle Scholar
  16. 16.
    Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34(38):12738–12744CrossRefGoogle Scholar
  17. 17.
    Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:232105CrossRefGoogle Scholar
  18. 18.
    Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88(3):983–1008CrossRefGoogle Scholar
  19. 19.
    Medvedev N, Popov V, Henneberger C, Kraev I, Rusakov DA, Stewart MG (2014) Glia selectively approach synapses on thin dendritic spines. Philos Trans R Soc Lond Ser B Biol Sci 369(1654):20140047CrossRefGoogle Scholar
  20. 20.
    Lushnikova I, Skibo G, Muller D, Nikonenko I (2009) Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus. Hippocampus 19(8):753–762CrossRefGoogle Scholar
  21. 21.
    Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55(1):13–23CrossRefGoogle Scholar
  22. 22.
    Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML, Gabbott PL, Bliss TV, Stewart MG (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 128(2):251–262CrossRefGoogle Scholar
  23. 23.
    Sherpa AD, Xiao F, Joseph N, Aoki C, Hrabetova S (2016) Activation of beta-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse 70(8):307–316CrossRefGoogle Scholar
  24. 24.
    Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA (2010) Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58(5):572–587PubMedPubMedCentralGoogle Scholar
  25. 25.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645CrossRefGoogle Scholar
  26. 26.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813CrossRefGoogle Scholar
  27. 27.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210CrossRefGoogle Scholar
  28. 28.
    Heller JP, Rusakov DA (2017) The nanoworld of the tripartite synapse: insights from super-resolution microscopy. Front Cell Neurosci 11:374CrossRefGoogle Scholar
  29. 29.
    Panatier A, Arizono M, Nagerl UV (2014) Dissecting tripartite synapses with STED microscopy. Philos Trans R Soc Lond Ser B Biol Sci 369(1654):20130597CrossRefGoogle Scholar
  30. 30.
    Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca(2)(+) signalling: an unexpected complexity. Nat Rev Neurosci 15(5):327–335CrossRefGoogle Scholar
  31. 31.
    Smith AJ, Verkman AS (2015) Superresolution imaging of aquaporin-4 cluster size in antibody-stained paraffin brain sections. Biophys J 109(12):2511–2522CrossRefGoogle Scholar
  32. 32.
    Gucek A, Jorgacevski J, Singh P, Geisler C, Lisjak M, Vardjan N, Kreft M, Egner A, Zorec R (2016) Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cell Mol Life Sci 73(19):3719–3731CrossRefGoogle Scholar
  33. 33.
    Sakers K, Lake AM, Khazanchi R, Ouwenga R, Vasek MJ, Dani A, Dougherty JD (2017) Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A 114(19):E3830–E3838CrossRefGoogle Scholar
  34. 34.
    van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009CrossRefGoogle Scholar
  35. 35.
    Endesfelder U, Heilemann M (2015) Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol Biol 1251:263–276CrossRefGoogle Scholar
  36. 36.
    Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176CrossRefGoogle Scholar
  37. 37.
    Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45CrossRefGoogle Scholar
  38. 38.
    Grosche A, Grosche J, Tackenberg M, Scheller D, Gerstner G, Gumprecht A, Pannicke T, Hirrlinger PG, Wilhelmsson U, Huttmann K, Hartig W, Steinhauser C, Pekny M, Reichenbach A (2013) Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus. PLoS One 8(7):e69143CrossRefGoogle Scholar
  39. 39.
    Heller JP, Michaluk P, Sugao K, Rusakov DA (2017) Probing nano-organization of astroglia with multi-color super-resolution microscopy. J Neurosci Res 95(11):2159–2171CrossRefGoogle Scholar
  40. 40.
    Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, Miyawaki A (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488CrossRefGoogle Scholar
  41. 41.
    Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529CrossRefGoogle Scholar
  42. 42.
    Mlodzianoski MJ, Juette MF, Beane GL, Bewersdorf J (2009) Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt Express 17(10):8264–8277CrossRefGoogle Scholar
  43. 43.
    Metcalf DJ, Edwards R, Kumarswami N, Knight AE (2013) Test samples for optimizing STORM super-resolution microscopy. J Vis Exp 79:50579Google Scholar
  44. 44.
    Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340CrossRefGoogle Scholar
  45. 45.
    Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390CrossRefGoogle Scholar
  46. 46.
    Herrmannsdorfer F, Flottmann B, Nanguneri S, Venkataramani V, Horstmann H, Kuner T, Heilemann M (2017) 3D d STORM imaging of fixed brain tissue. Methods Mol Biol 1538:169–184CrossRefGoogle Scholar
  47. 47.
    Pleiner T, Bates M, Trakhanov S, Lee CT, Schliep JE, Chug H, Bohning M, Stark H, Urlaub H, Gorlich D (2015) Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. Elife 4:e11349CrossRefGoogle Scholar
  48. 48.
    de Castro MA, Rammner B, Opazo F (2016) Aptamer stainings for super-resolution microscopy. Methods Mol Biol 1380:197–210CrossRefGoogle Scholar
  49. 49.
    Chamma I, Rossier O, Giannone G, Thoumine O, Sainlos M (2017) Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nat Protoc 12(4):748–763CrossRefGoogle Scholar
  50. 50.
    Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, Belmont AS, Selvin PR (2016) Labeling proteins inside living cells using external fluorophores for microscopy. Elife 5:e20378CrossRefGoogle Scholar
  51. 51.
    Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, Lee SH, Belmont AS, Selvin PR (2017) Labeling proteins inside living cells using external fluorophores for fluorescence microscopy. Elife 6:e20378CrossRefGoogle Scholar
  52. 52.
    Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampe R (2015) SLAP: small labeling pair for single-molecule super-resolution imaging. Angew Chem Int Ed Engl 54(35):10216–10219CrossRefGoogle Scholar
  53. 53.
    Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG (2016) Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol BioSyst 12(6):1731–1745CrossRefGoogle Scholar
  54. 54.
    Raulf A, Spahn CK, Zessin PJ, Finan K, Bernhardt S, Heckel A, Heilemann M (2014) Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteinsdaggerElectronic supplementary information (ESI) available. See DOI: 10.1039/c4ra01027bClick here for additional data file. RSC Adv 4(57):30462–30466CrossRefGoogle Scholar
  55. 55.
    Mateos-Gil P, Letschert S, Doose S, Sauer M (2016) Super-resolution imaging of plasma membrane proteins with click chemistry. Front Cell Dev Biol 4:98CrossRefGoogle Scholar
  56. 56.
    Furstenberg A, Heilemann M (2013) Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 15(36):14919–14930CrossRefGoogle Scholar
  57. 57.
    Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036CrossRefGoogle Scholar
  58. 58.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795CrossRefGoogle Scholar
  59. 59.
    Chozinski TJ, Gagnon LA, Vaughan JC (2014) Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588(19):3603–3612CrossRefGoogle Scholar
  60. 60.
    Turkowyd B, Virant D, Endesfelder U (2016) From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem 408(25):6885–6911CrossRefGoogle Scholar
  61. 61.
    Herbert S, Soares H, Zimmer C, Henriques R (2012) Single-molecule localization super-resolution microscopy: deeper and faster. Microsc Microanal 18(6):1419–1429CrossRefGoogle Scholar
  62. 62.
    Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67(3):1291–1300CrossRefGoogle Scholar
  63. 63.
    Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999CrossRefGoogle Scholar
  64. 64.
    Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130CrossRefGoogle Scholar
  65. 65.
    Lampe A, Haucke V, Sigrist SJ, Heilemann M, Schmoranzer J (2012) Multi-colour direct STORM with red emitting carbocyanines. Biol Cell 104(4):229–237CrossRefGoogle Scholar
  66. 66.
    Jungmann R, Avendano MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 11(3):313–318CrossRefGoogle Scholar
  67. 67.
    Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375CrossRefGoogle Scholar
  68. 68.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783CrossRefGoogle Scholar
  69. 69.
    Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UCL Queen Square Institute of NeurologyUniversity College London, Queen SquareLondonUK
  2. 2.Laboratory of Brain Microcircuits, Institute of NeuroscienceUniversity of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations