Advertisement

Astrocytes pp 19-33 | Cite as

Role of Astrocytes in the Neurogenic Niches

  • Julia Schneider
  • Julian Karpf
  • Ruth BeckervordersandforthEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)

Abstract

In the mammalian brain, highly specialized astrocytes serve as neural stem cells (NSCs) that divide and give rise to new neurons, in a process called neurogenesis. During embryonic development NSCs generate almost all neurons of the brain. Soon after birth the neurogenic potential of NSCs is highly reduced, and neurogenesis occurs only in two specialized brain regions called the neurogenic niches. Niche cells are essential to stem cells as they provide structural and nutritional support, and control fundamental stem cell decisions. Astrocytes, major components of the adult neurogenic niches, are evolving as important regulators of neurogenesis, by controlling NSC proliferation, fate choice, and differentiation of the progeny. Therefore, astrocytes contribute to neurogenesis in two ways: as NSCs and as niche cells. This review highlights the role of astrocyte-like NSCs during development and adulthood, and summarizes how niche astrocytes control the process of adult neurogenesis.

Key words

Astrocytes Neural stem cells Adult neurogenesis Neural stem cell niche 

Notes

Acknowledgments

We would like to thank Silvia Cappello, Max Planck Institute for Psychiatry, Munich, for carefully revising the manuscript. This work is funded by the Deutsche Forschungsgemeinschaft (DFG; BE 5136/2-1 and BE5136/1-2) and the DFG research training group 2162 “Neurodevelopment and Vulnerability of the Central Nervous System” (DFG GRK2162/1).

References

  1. 1.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Med 5(7):a018812CrossRefGoogle Scholar
  5. 5.
    Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisen J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23(1):25–30PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Falk S, Gotz M (2017) Glial control of neurogenesis. Curr Opin Neurobiol 47:188–195PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41(6):881–890PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci Off J Soc Neurosci 22(8):3161–3173CrossRefGoogle Scholar
  10. 10.
    Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell K (2003) Signaling to and from radial glia. Glia 43(1):44–46PubMedCrossRefGoogle Scholar
  12. 12.
    Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26(9):469–476PubMedCrossRefGoogle Scholar
  13. 13.
    Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci Off J Soc Neurosci 25(30):6997–7003CrossRefGoogle Scholar
  14. 14.
    Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2015) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7(1):a020362PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Taverna E, Gotz M, Huttner WB (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 30:465–502PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Grove EA, Williams BP, Li DQ, Hajihosseini M, Friedrich A, Price J (1993) Multiple restricted lineages in the embryonic rat cerebral cortex. Development 117(2):553–561PubMedPubMedCentralGoogle Scholar
  17. 17.
    Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Gotz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37(5):751–764PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    McCarthy M, Turnbull DH, Walsh CA, Fishell G (2001) Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci Off J Soc Neurosci 21(17):6772–6781CrossRefGoogle Scholar
  19. 19.
    Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323(5917):1074–1077PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Magavi SS, Mitchell BD, Szentirmai O, Carter BS, Macklis JD (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci Off J Soc Neurosci 25(46):10729–10739CrossRefGoogle Scholar
  21. 21.
    Walsh C, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241(4871):1342–1345PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Beckervordersandforth R, Tripathi P, Ninkovic J, Bayam E, Lepier A, Stempfhuber B, Kirchhoff F, Hirrlinger J, Haslinger A, Lie DC, Beckers J, Yoder B, Irmler M, Gotz M (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7(6):744–758PubMedCrossRefGoogle Scholar
  23. 23.
    Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–559PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gotz M, Sirko S, Beckers J, Irmler M (2015) Reactive astrocytes as neural stem or progenitor cells: in vivo lineage, in vitro potential, and genome-wide expression analysis. Glia 63(8):1452–1468PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340PubMedCrossRefGoogle Scholar
  26. 26.
    Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, Enikolopov G, Nauen DW, Christian KM, Ming GL, Song H (2015) Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17(3):360–372PubMedCrossRefGoogle Scholar
  27. 27.
    Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18(4):490–492PubMedCrossRefGoogle Scholar
  29. 29.
    Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8(5):566–579PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pilz GA, Bottes S, Betizeau M, Jorg DJ, Carta S, Simons BD, Helmchen F, Jessberger S (2018) Live imaging of neurogenesis in the adult mouse hippocampus. Science 359(6376):658–662PubMedCrossRefGoogle Scholar
  31. 31.
    Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161(7):1644–1655PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Falk S, Bugeon S, Ninkovic J, Pilz GA, Postiglione MP, Cremer H, Knoblich JA, Gotz M (2017) Time-specific effects of spindle positioning on embryonic progenitor pool composition and adult neural stem cell seeding. Neuron 93(4):777–791.e773PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18(5):657–665PubMedCrossRefGoogle Scholar
  35. 35.
    Gotz M, Nakafuku M, Petrik D (2016) Neurogenesis in the developing and adult brain-similarities and key differences. Cold Spring Harb Perspect Biol 8(7)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lim DA, Alvarez-Buylla A (2016) The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol 8(5)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascon S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Gotz M (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12(12):1524–1533PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67(1-2):147–156PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872PubMedCrossRefGoogle Scholar
  40. 40.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci Off J Soc Neurosci 26(30):7907–7918CrossRefGoogle Scholar
  41. 41.
    Sohn J, Orosco L, Guo F, Chung SH, Bannerman P, Mills Ko E, Zarbalis K, Deng W, Pleasure D (2015) The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci Off J Soc Neurosci 35(9):3756–3763CrossRefGoogle Scholar
  42. 42.
    Ortega F, Gascon S, Masserdotti G, Deshpande A, Simon C, Fischer J, Dimou L, Chichung Lie D, Schroeder T, Berninger B (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15(6):602–613PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2(+) neural stem cells in the adult hippocampus. Cell Stem Cell 1(5):515–528PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jessberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11(8):888–893PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale PJ, Milo M, Wegleiter T, Jessberger S, Taylor V (2016) Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell 19(5):653–662PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Suhonen JO, Peterson DA, Ray J, Gage FH (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383(6601):624–627PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 32(1-2):187–198PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci Off J Soc Neurosci 20(23):8727–8735CrossRefGoogle Scholar
  49. 49.
    Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89(5):1092–1100PubMedCrossRefGoogle Scholar
  51. 51.
    Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A 96(13):7526–7531PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nakayama T, Momoki-Soga T, Inoue N (2003) Astrocyte-derived factors instruct differentiation of embryonic stem cells into neurons. Neurosci Res 46(2):241–249PubMedCrossRefGoogle Scholar
  53. 53.
    Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44PubMedCrossRefGoogle Scholar
  54. 54.
    Ueki T, Tanaka M, Yamashita K, Mikawa S, Qiu Z, Maragakis NJ, Hevner RF, Miura N, Sugimura H, Sato K (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci Off J Soc Neurosci 23(37):11732–11740CrossRefGoogle Scholar
  55. 55.
    Grill RJ, Pixley SK (1997) In vitro generation of adult rat olfactory sensory neurons and regulation of maturation by coculture with CNS tissues. J Neurosci Off J Soc Neurosci 17(9):3120–3127CrossRefGoogle Scholar
  56. 56.
    Pixley SK (1992) CNS glial cells support in vitro survival, division, and differentiation of dissociated olfactory neuronal progenitor cells. Neuron 8(6):1191–1204PubMedCrossRefGoogle Scholar
  57. 57.
    Temple S, Davis AA (1994) Isolated rat cortical progenitor cells are maintained in division in vitro by membrane-associated factors. Development 120(4):999–1008PubMedGoogle Scholar
  58. 58.
    Ehret F, Vogler S, Kempermann G (2015) A co-culture model of the hippocampal neurogenic niche reveals differential effects of astrocytes, endothelial cells and pericytes on proliferation and differentiation of adult murine precursor cells. Stem Cell Res 15(3):514–521PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS, Pekny M (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25(10):2619–2627PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wilhelmsson U, Faiz M, de Pablo Y, Sjoqvist M, Andersson D, Widestrand A, Potokar M, Stenovec M, Smith PL, Shinjyo N, Pekny T, Zorec R, Stahlberg A, Pekna M, Sahlgren C, Pekny M (2012) Astrocytes negatively regulate neurogenesis through the Jagged1-mediated notch pathway. Stem Cells 30(10):2320–2329PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Murai KK, Pasquale EB (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 59(11):1567–1578PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Nestor MW, Mok LP, Tulapurkar ME, Thompson SM (2007) Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J Neurosci 27(47):12817–12828PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhuang Z, Huang J, Cepero ML, Liebl DJ (2011) Eph signaling regulates gliotransmitter release. Commun Integr Biol 4(2):223–226PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 106(30):12524–12529PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, Kullander K, Rose CR, Pasquale EB, Klein R (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12(10):1285–1292PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG, Frisen J (2005) Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 19(4):462–471PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jiao JW, Feldheim DA, Chen DF (2008) Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc Natl Acad Sci U S A 105(25):8778–8783PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dowell JA, Johnson JA, Li L (2009) Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res 8(8):4135–4143PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Keene SD, Greco TM, Parastatidis I, Lee SH, Hughes EG, Balice-Gordon RJ, Speicher DW, Ischiropoulos H (2009) Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics 9(3):768–782PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E, Lopatar J, Pfrieger FW, Bezzi P, Bischofberger J, Toni N (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88(5):957–972PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65(6):859–872PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Barkho B, Song H-J, Aimone B, Kuwabara T, Nakashima K, Gage FH, Zhao X-Y (2006) Identification of astrocytes-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15(3):407–421PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765PubMedCrossRefGoogle Scholar
  76. 76.
    Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci Off J Soc Neurosci 22(2):486–492CrossRefGoogle Scholar
  77. 77.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433PubMedCrossRefGoogle Scholar
  78. 78.
    Blake SM, Strasser V, Andrade N, Duit S, Hofbauer R, Schneider WJ, Nimpf J (2008) Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 27(22):3069–3080PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lu Z, Kipnis J (2010) Thrombospondin 1--a key astrocyte-derived neurogenic factor. FASEB J 24(6):1925–1934PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cvijetic S, Bortolotto V, Manfredi M, Ranzato E, Marengo E, Salem R, Canonico PL, Grilli M (2017) Cell autonomous and noncell-autonomous role of NF-kappaB p50 in astrocyte-mediated fate specification of adult neural progenitor cells. Glia 65(1):169–181PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Meneghini V, Bortolotto V, Francese MT, Dellarole A, Carraro L, Terzieva S, Grilli M (2013) High-mobility group box-1 protein and beta-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-kappaB axis: relevance for Alzheimer’s disease. J Neurosci Off J Soc Neurosci 33(14):6047–6059CrossRefGoogle Scholar
  82. 82.
    Valente MM, Allen M, Bortolotto V, Lim ST, Conant K, Grilli M (2015) The MMP-1/PAR-1 axis enhances proliferation and neuronal differentiation of adult hippocampal neural progenitor cells. Neural Plast 2015:10CrossRefGoogle Scholar
  83. 83.
    Beckervordersandforth R, Deshpande A, Schaffner I, Huttner HB, Lepier A, Lie DC, Gotz M (2014) In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Reports 2(2):153–162PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julia Schneider
    • 1
  • Julian Karpf
    • 1
  • Ruth Beckervordersandforth
    • 1
    Email author
  1. 1.Emil Fischer Center, Institute of BiochemistryFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations